黑体腔高温传感器结构设计

Structure design of high-temperature blackbody cavity

  • 摘要: 基于积分方程理论建立了黑体腔的结构模型,分析了腔体长径比、孔径比、接收器到腔口的距离、腔体材料本身发射率等参数对腔体发射率的影响,提出了黑体腔优化参数设计,同时,应用有限元分析法分析了不同形状黑体腔腔体对接收器稳态温度、动态响应时间的影响。研究结果表明:黑体腔结构参数的改变直接影响黑体腔发射率、接收器稳态温度、动态响应时间,进而影响黑体腔性能,积分方程法和有限元法结合分析为黑体腔研究以及优化设计提供了新思路。

     

    Abstract: Based on integral equation theory, the structure of the blackbody cavity model was established. Analyzed the length to diameter ratio of cavity, the aperture ratio, the distance between the aperture and the receiver, the cavity material itself emissivity and other factors that have influence on the cavity emissivity, and the optimization parameters of the blackbody cavity was designed, at the same time the finite element analysis method was used to analysis the influence of different shapes of blackbody cavity on the receiver steady temperature and the dynamic response time. The result shows that the change of the blackbody cavity structure parameters have direct influence on the blackbody cavity emissivity, the receiver steady temperature, and the dynamic response time, and then affects the performance of the blackbody cavity, and the method of the combination of the finite element method and integral equation method analysis provides a new idea for the study and optimization design of the blackbody cavity.

     

/

返回文章
返回