红外瞄具温度应力可靠性检测系统研究
Temperature stress reliability testing system for infrared aiming device
-
摘要: 为了检测红外瞄具在高低温恶劣环境下对不同波长的红外目标成像可靠性,利用黑体和平行光管组成的光学系统模拟无穷远红外目标,红外瞄具置于高低温环境下,CCD采集红外瞄具对红外目标所成的像,从而判定高低温下红外瞄具成像质量。所设计的平行光管视场大,各波长对应焦平面处在20 lp/mm空间频率下的MTF均高于0.2。同时为了实现快速准确地在检测系统中提供稳定的-55~70℃的高低温实验条件,采用一种基于自适应模糊PID温度控制技术。采用自适应因子将模糊推理器和PID控制器相结合,通过在线自调整控制参数,进一步提高了PID控制器的性能和系统的控制精度。实验表明该方法提高了常规PID控制的动态响应过程并保持无静态误差,其控制精度可达0.05℃。Abstract: In order to detect the imaging reliability of infrared target with difference wavelength at high low temperature,black body and IR collimator are adopted to simulate infinite target,IR aiming device is located in high low temperature and image of IR target is captured by CCD so as to judge the imaging quality of IR aiming device. The designed collimator was with wild-field and its MTF at 20 lp/mm spatial frequency was higher than 0.2 in corresponding focal plane of different wavelength. Meanwhile in order to provide an stable -55℃ -70℃ high low temperature testing condition rapidly and accurately, a self-adaption fuzzy PID temperature control technology was provided. Adaptive factor was adopted to combine fuzzy inferior and PID controller. By adjusting control parameters on-line, the performance of PID controller was further improved and system control accuracy was raised up. The experimental results show that this method not only improves the dynamic response process but also guarantee no static error. The temperature control precision is 0.05℃.