基于表面等离子体共振原理的小型化实时在线海上溢油监测系统

Compact real-time online oil spill detection system based on surface plasmon resonance

  • 摘要: 为了对不易被发现的早期小面积溢油进行高精度、全天候、实时在线的监测,以达到早发现、早预警、早处理的目的,提出了基于表面等离子体共振(surface plasmon resonance,SPR )技术的小型化实时在线海上溢油检测系统的设计思想,系统拟采用入射光源为非扫描的角度调制型方式,目的是便于光线完全覆盖待测样品检测时所需的入射角度范围。对大量的原油和石油样品的折射率进行检测确定其范围,再通过MATLAB与ZEMAX模拟仿真结合,得到了光源最优化的中心波长、入射角度范围以及棱镜的相关参数,并确定出探测器的相关指标。最终通过建模与仿真,验证了系统装置的可行性,并得出了初步试验方案。

     

    Abstract: The design and preliminary investigation of a real-time, online, all-weather accurate monitoring system for the early detection and warning of difficult-to-detect, inchoate, small-area oil spills were presented. The scheme is based on a miniaturized surface plasmon resonance (SPR) device. The system used a light source with a non-scanning angle modulation to ensure that the light cover the incident angle range of variation related to the samples under test. With a fixed range of sample refractive indices, corresponding to most of the known crude and refined oil products, the parameters for the detector through optimization of the central wavelength and the incident angle of the light source were obtained, as well as related parameters of the prism by a combinational simulation using commercial software packages MATLAB and ZEMAX. Through modeling and simulation, followed by preliminary experiments a basic model for the system feasibility was arrived for the proposed purpose.

     

/

返回文章
返回