基于本征模函数的高光谱数据特征提取方法

Features extraction method based on intrinsic mode function for hyperspectral data

  • 摘要: 针对基于参数估计的特征提取方法高光谱数据维数高参数估计偏差大、细节光谱信息易丢失等问题,引入经验模式分解理论,提出了基于本征模函数的高光谱数据特征提取方法。该方法通过计算光谱特征的最大最小值以及均值得到本征模函数,从而得到反映高光谱数据的不同尺度的光谱波形波动信息,即吸收特征信息,并将高光谱数据投影到本征模函数空间,从而实现高光谱数据中不同物质属性光谱特征提取。利用航空推扫式成像光谱仪数据进行方法性能分析与验证,试验结果表明该方法不需要进行统计参数估计,避免了高光谱数据协方差的奇异性和参数估计不准确的影响,并较好地保留了数据提供的所有信息,增大了数据类间可分性。

     

    Abstract: The empirical mode decomposition(EMD) theory was applied and the features extraction method based on intrinsic mode function(IMF) was proposed in order to eliminate the errors of parameters estimation(such as covariance matrix) and retain the detail spectral information. The maximum value, minimum value and mean of hyperspectral data were calculated to estimate the IMF. IMF can express the spectral absorption features with different scales of hyperspectral data. The raw hyperspectral data was projected the IMF dimension to implement the spectral features extraction of hyperspectral data. The airborne hyperspectral data collected by push-broom hyperspectral imager(PHI) was applied to analyze and evaluate the performance of the proposed method. The results show that the effect of covariance singularity and inaccurate parameters estimation of hyperspectral data is avoided, the main and important information of data is retained and the classes' separability is increased.

     

/

返回文章
返回