留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主动偏振成像的系统结构概述

王霞 张明阳 陈振跃 拜晓锋 金伟其

王霞, 张明阳, 陈振跃, 拜晓锋, 金伟其. 主动偏振成像的系统结构概述[J]. 红外与激光工程, 2013, 42(8): 2244-2251.
引用本文: 王霞, 张明阳, 陈振跃, 拜晓锋, 金伟其. 主动偏振成像的系统结构概述[J]. 红外与激光工程, 2013, 42(8): 2244-2251.
Wang Xia, Zhang Mingyang, Chen Zhenyue, Bai Xiaofeng, Jin Weiqi. Overview on system structure of active polarization imaging[J]. Infrared and Laser Engineering, 2013, 42(8): 2244-2251.
Citation: Wang Xia, Zhang Mingyang, Chen Zhenyue, Bai Xiaofeng, Jin Weiqi. Overview on system structure of active polarization imaging[J]. Infrared and Laser Engineering, 2013, 42(8): 2244-2251.

主动偏振成像的系统结构概述

基金项目: 

微光夜视技术国防科技重点实验室基金(J20110503)

详细信息
    作者简介:

    王霞(1972-),女,副教授,博士生导师,主要研究方向为光电检测、光谱分析及微光与红外成像。Email:angelniuniu@bit.edu.cn

  • 中图分类号: O439

Overview on system structure of active polarization imaging

  • 摘要: 偏振成像技术是近年来国内外研究的热点,在军事和民用方面都有巨大的应用价值。与被动偏振成像方式相比,主动偏振成像技术弥补了被动成像单纯依靠目标自身辐射或反射成像的不足,大大提高了成像距离和信噪比。引入主动光源,可以根据目标的出射辐射计算其Mueller矩阵,分析目标反射或散射光的强度、相干、消偏振等特性,进而得到目标的自身特性。介绍了近年来主动成像技术的发展;分析了系统结构组成及工作原理;最后给出了几种典型的主动偏振成像系统,并分析了这些系统的优缺点,指出了偏振成像系统的未来发展趋势。
  • [1] Tyo J Scott, Goldstein Dennis L, Chenault David B, et al. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 2006, 45(22): 5453-5469.
    [2] Wang Qi, Liang Xiaoxue, Wei Jingsong, et al. Experiment of laser polarization imaging using streak tube laser imaging system[J]. Infrared and Laser Engineering, 2010, 39(3): 427-430. (in Chinese)王骐, 梁小雪, 魏靖松, 等. 采用条纹管激光成像系统的偏振成像实验[J]. 红外与激光工程, 2010, 39(3): 427-430.
    [3] Li Yanan, Sun Xiaobing, Mao Yongna, et al. Spectral polarization characteristic of space target[J]. Infrared and Laser Engineering, 2012, 41(1): 205-210. (in Chinese)李雅男, 孙晓兵, 毛永娜, 等. 空间目标光谱偏振特性[J]. 红外与激光工程, 2012, 41(1): 205-210.
    [4] Pezzanti J L, Chipman R A. Mueller matrix imaging polarimetry[J]. Optical Engineering, 1995, 34(6): 1558-1568.
    [5] Chipman R A. Polarization diversity active imaging[C]//SPIE, 1997: 68-73.
    [6] Clémenceau P, Breugriot S, Collot L. Polarization diversity active imaging[C]//SPIE, 1998, 3380: 284-291.
    [7] Goldstein D H. Polarimetric characterization of federal standard paints[C]//SPIE, 2000: 112-123.
    [8] Priest R G, Meier S R. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces[J]. Opt Eng, 2002, 41(5): 988-993.
    [9] Réfrégier P, Goudail F. Invariant polarimetric contrast parameters of coherent light[J]. Journal of the Optical Society of America A, 2002, 19(6): 1223-1233.
    [10] Réfrégier P, Goudail F, Roux N. Estimation of the degree of polarization in active coherent imagery by using the natural representation[J]. Journal of the Optical Society of America A, 2004, 21(12): 2292-2300.
    [11] Bueno J M, Artal P. Double-pass imaging polarimetry in the human eye[J]. Optics Letters, 1999, 24(1): 64-66.
    [12] Laude-Boulesteix B, De M A, Drevillon B, et al. Mueller polarimetric imaging system with liquid crystals[J]. Applied Optics, 2004, 43(14): 2824-2832.
    [13] Morel O, Stolz C, Meriaudeau F, et al. Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging[J]. Applied Optics, 2006, 45(17): 4062-4068.
    [14] Antonelli Maria-Rosaria, Pierangelo A, Novikova T, et al. Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data[J]. Optics Express, 2010, 18(10): 10200-10208.
    [15] Breugnot S, Clemenceau P. Modeling and performances of a polarization active imager at lambda=806 nm[J]. Optical Engineering, 2000, 39(10): 2681-2688.
    [16] Du Xiliang. Study on the technique for measuring the polarization state of light based no division of amplitude method[D]. Harbin: Harbin Institute of Technology, 2007.杜西亮. 基于振幅分割的光偏振测量技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
    [17] Fendrich T, Fischer S K, Bille J F. Development of an electro-optical ellipsometer with application in ophthalmology[C]//SPIE, 1994: 76-82.
    [18] Zhang Jianhua, Liu Liguo, Zhu Henian, et al. The high resolution polarization nulling measurement system with magneto-optical modulator[J]. Journal of Optoelectronics· Laser, 2001, 12(10): 1041-1042.张建华, 刘立国, 朱鹤年, 等. 应用磁光调制器的高分辨率偏振消光测量系统[J]. 光电子·激光, 2001, 12(10): 1041-1042.
    [19] Jellison G E, Modine F A. Two-modulator generalized ellipsometry: theory[J]. Applied Optics, 1997, 36(31): 8190-8198.
    [20] Jellison G E, Modine F A. Two-modulator generalized ellipsometry: experiment and calibration[J]. Applied Optics, 1997, 36(31): 8184-8189.
    [21] Thompson R C, Bottiger J R, Fry E S. Measurement of polarized light interactions via the Mueller matrix[J]. Applied Optics, 1980, 19(8): 1323-1332.
    [22] Krishnan S, Nordine P C. Fast ellipsometry and Mueller matrix ellipsometry using the division-of-amplitude photopolarimeter[C]//SPIE, 1996: 152-156.
    [23] Delplancke F. Automated high-speed Mueller matrix scatterometer[J]. Applied Optics, 1997, 36(22): 5388-5395.
    [24] Bueno J M. Polarimetry using liquid-crystal variable retarders theory and calibration[J]. J Opt A: Pure Appl Opt, 2000, 2(3): 216-222.
    [25] Zhuang Zhizhong, Suh SeongWoo, Patel J S. Polarization controller using nematic liquid crystals[J]. Optics Letters, 1999, 24(10): 694-696.
    [26] Azzam Rasheed M. A., Mueller-matrix ellipsometry: a review[C]//SPIE, 1997: 396-405.
    [27] Azzam R M A. Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal[J]. Optics Letters, 1978, 2(6): 148-150.
    [28] Gerligand Pierre-Yves, Smith M, Chipman R. Polarimetric images of a cone[J]. Optics Express, 1999, 4(10): 420-430.
    [29] Collins R W, Koh Joohyun. Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films[J]. Journal of the Optical Society of America A, 1999, 16(8): 1997-2006.
    [30] Wolfe Justin, Chipman Russell A. High-speed imaging polarimeter[C]//SPIE, 2003: 24-32.
    [31] Smith M H. Optimization of a dual-rotating-retarder mueller matrix polarimeter[J]. Applied Optics, 2002, 41(13): 2488-2493.
    [32] Romerein Matthew J, Philippson Jeffrey N, Brooks Robert L, et al. Calibration method using a single retarder to simultaneously measure polarization and fully characterize a polarimeter over a broad range of wavelengths[J]. Applied Optics, 2011, 50(28): 5382-5389.
    [33] Wadsworth Samuel L, Boreman Glenn D. Comparison of quarter-wave retarders over finite spectral and angular bandwidths for infrared polarimetric-imaging applications[J]. Applied Optics, 2011, 50(36): 6682-6688.
    [34] Tyo J Scott, Turner Jr Theodore S. Imaging spectropolarimeters for use in visible and infrared remote sensing[C]//SPIE, 1999: 214-224.
    [35] De Martino Antonello, Kim Yong-Ki, Garcia-Caurel Enric, et al. Optimized Mueller polarimeter with liquid crystals[J]. Optics Letters, 2003, 28(8): 616-618.
    [36] Liu X, Tseng S, Tripathi R, et al. Automated Stokesmetric imaging laser radar system[J]. Optical Engineering, 2012, 51(7): 73201-73204.
    [37] Wozniak W A, Kurzynowski P, Drobczyński S. Adjustment method of an imaging Stokes polarimeter based on liquid crystal variable retarders[J]. Applied Optics, 2011, 50(2): 203-212.
    [38] Zhang Ying, Zhao Huijie, Cheng Xuan, et al. Design of full-polarized and multi-spectral imaging system based on LCVR[J]. Spectroscopy and Spectral Analysis, 2011, 31(5): 1375-1378.张颖, 赵慧洁, 程宣, 等. 基于LCVR调谐的全偏振多谱段成像系统[J]. 光谱学与光谱分析, 2011, 31(5): 1375-1378.
    [39] Garlick G F J, Steigmann G A, Lamb W E. Differential optical polarization detectors: US, 3992571[P]. 1976-11-16.
    [40] Azzam R M A. Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four stokes parameters of light[J]. Optica Acta: International Journal of Optics, 1982, 29(5): 685-689.
    [41] Azzam R M A. Arrangement of four photodetectors for measuring the state of polarization of light[J]. Optics Letters, 1985, 10(7): 309-311.
    [42] Barter James D, Lee Peter H, Thompson Jr H R, et al.Stokes parameter imaging of scattering surfaces[C]//SPIE, 1997: 314-320.
    [43] Luo Ruizhi, Qiao Yanli, Hong Jin. Polarization imaging device: China, 02264579.9[P]. 2010-09-22. (in Chinese)罗睿智, 乔延利, 洪津, 等. 偏振成像装置: 中国, 02264579.9[P]. 2010-09-22.
    [44] Li Shuang, Qiu Zhenwei, Yang Changjiu. Structure of simultaneous polarization imaging system: China, 201589659[P]. 2010-01-13. (in Chinese)李双, 裘桢炜, 杨长久. 同时偏振成像探测系统的光学结构: 中国, 201589659[P]. 2010-01-13.
    [45] Zhang Xugue, Jiang Yuesong, Lu Xiaomei, et al. Modeling and theoretical analysis for improving laser polarized active imaging[J]. Journal of Applied Optics, 2008, 29(4): 580-584.张绪国, 江月松, 路小梅, 等. 一种改进激光偏振主动成像的建模及理论分析[J]. 应用光学, 2008, 29(4): 580-584.
    [46] Pezzaniti J Larry, Chenault David B. A division of aperture MWIR imaging polarimeter[C]//SPIE, 2005: 58812V-58880V.
    [47] Moultrie Sean, Roche Michael, Lompado Art, et al, Design of a dual use imager incorporating polarimetric capabilities[C]//SPIE, 2007: 66810B-66820B.
    [48] Nordin Gregory P, Meier Jeffrey T, Deguzman Panfilo C, et al. Diffractive optical element for Stokes vector measurement with a focal plane array[C]//SPIE, 1999: 169-177.
    [49] Sato T, Araki T, Sasaki Y, et al. Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements[J]. Applied Optics, 2007, 46(22): 4963-4967.
    [50] Raisanen A D, Presnar M D, Ninkov Z, et al. Simulation of practical single-pixel wire-grid polarizers for superpixel stokes vector imaging arrays[J]. Optical Engineering, 2012, 51(1): 016201.
    [51] Oka K, Kaneko T. Compact complete imaging polarimeter using birefringent wedge prisms[J]. Optics Express, 2003, 11(13): 1510-1519.
    [52] Oka K, Saito N. Snapshot complete imaging polarimeter using Savart plates[C]//SPIE, 2006: 629507-629508.
    [53] Wozniak Wzadyszaw A., Kurzynowski Piotr. Compact spatial polariscope for light polarization state analysis[J]. Optics Express, 2008, 16(14): 10471-10479.
    [54] Mujat Mircea, Baleine Erwan, Dogariu Aristide. Interferometric imaging polarimeter[J]. Journal of the Optical Society of America A, 2004, 21(11): 2244-2249.
    [55] Drobczynski S, Bueno J M, Artal Pablo, et al. Transmission imaging polarimetry for a linear birefringent medium using a carrier fringe method[J]. Applied Optics, 2006, 45(22): 5489-5496.
  • [1] 李荣华, 唐智超, 朴俊峰, 李宏亮.  偏振参数最优重构的水下降质图像清晰化方法 . 红外与激光工程, 2021, 50(6): 20200426-1-20200426-9. doi: 10.3788/IRLA20200426
    [2] 刘星洋, 翟尚礼, 李靖, 汪洋, 苗锋, 杜瀚宇, 邹超凡.  制冷型中波红外偏振成像光学系统设计 . 红外与激光工程, 2021, 50(2): 20200208-1-20200208-9. doi: 10.3788/IRLA20200208
    [3] 郭忠义, 康乾龙, 彭志勇, 崔月盟, 刘华松, 高隽, 郭凯.  基于超表面操控的偏振信息探测技术研究进展 . 红外与激光工程, 2020, 49(9): 20201041-1-20201041-15. doi: 10.3788/IRLA20201041
    [4] 郭忠义, 汪信洋, 李德奎, 王鹏飞, 张宁, 胡天伟, 张曼, 高隽.  偏振信息传输理论及应用进展(特约) . 红外与激光工程, 2020, 49(6): 20201013-1-20201013-19. doi: 10.3788/IRLA20201013
    [5] 刘鑫, 常军, 陈蔚霖, 杜杉, 武楚晗, 许祥馨, 朱懿.  连续变焦偏振视频显微物镜设计 . 红外与激光工程, 2020, 49(8): 20200003-1-20200003-6. doi: 10.3788/IRLA20200003
    [6] 赵永强, 戴慧敏, 申凌皓, 张景程.  水下偏振清晰成像方法综述 . 红外与激光工程, 2020, 49(6): 20190574-1-20190574-11. doi: 10.3788/IRLA20190574
    [7] 熊志航, 廖然, 曾亚光, 刘晋, 马辉.  利用偏振成像在复杂现场快速识别金属碎屑(特约) . 红外与激光工程, 2020, 49(6): 20201012-1-20201012-6. doi: 10.3788/IRLA20201012
    [8] 王稼禹, 李英超, 史浩东, 江伦, 王超, 刘壮, 李冠霖.  折反式望远系统全视场全口径偏振特性研究 . 红外与激光工程, 2019, 48(3): 318004-0318004(8). doi: 10.3788/IRLA201948.0318004
    [9] 胡浩丰, 李校博, 刘铁根.  基于偏振成像的水下图像复原技术研究最新进展 . 红外与激光工程, 2019, 48(6): 603006-0603006(13). doi: 10.3788/IRLA201948.0603006
    [10] 王辉, 王进, 李校博, 胡浩丰, 刘铁根.  一种基于圆偏光的偏振去雾成像优化方法 . 红外与激光工程, 2019, 48(11): 1126001-1126001(5). doi: 10.3788/IRLA201948.1126001
    [11] 时东锋, 黄见, 苑克娥, 王英俭, 谢晨波, 刘东, 朱文越.  空间编码复用散斑多信息融合关联成像(特邀) . 红外与激光工程, 2018, 47(5): 502001-0502001(8). doi: 10.3788/IRLA201847.0502001
    [12] 彭勇, 冯斌, 史泽林, 徐保树, 惠斌.  微偏振片阵列成像的非均匀校正研究 . 红外与激光工程, 2017, 46(4): 404004-0404004(8). doi: 10.3788/IRLA201746.0404004
    [13] 柏财勋, 李建欣, 周建强, 刘勤, 徐文辉.  基于微偏振阵列的干涉型高光谱偏振成像方法 . 红外与激光工程, 2017, 46(1): 136003-0136003(6). doi: 10.3788/IRLA201746.0138003
    [14] 刘震, 洪津, 龚冠源, 郑小兵, 杨伟锋, 袁银麟.  空间调制型全偏振成像系统的角度误差优化 . 红外与激光工程, 2017, 46(1): 117003-0117003(7). doi: 10.3788/IRLA201746.0117003
    [15] 徐超, 何利民, 王霞, 金伟其.  红外偏振成像系统高速处理模块设计 . 红外与激光工程, 2017, 46(2): 204002-0204002(8). doi: 10.3788/IRLA201746.0204002
    [16] 陈波, 杨靖, 李新阳, 杨旭, 李小阳.  相干光照明主动成像波前畸变的数字式快速校正 . 红外与激光工程, 2016, 45(7): 732001-0732001(5). doi: 10.3788/IRLA201645.0732001
    [17] 杨蔚, 顾国华, 陈钱, 周骁俊, 徐富元.  穆勒矩阵图像的获取及处理 . 红外与激光工程, 2015, 44(12): 3831-3836.
    [18] 赵永强, 张宇辰, 刘吾腾, 张艳, 李琳, 潘泉.  基于微偏振片阵列的偏振成像技术研究 . 红外与激光工程, 2015, 44(10): 3117-3123.
    [19] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵.  大孔径静态超光谱全偏振成像技术 . 红外与激光工程, 2014, 43(2): 574-578.
    [20] 王磊, 徐智勇, 张启衡, 王华闯.  蓝绿激光水下成像系统的探测灵敏度分析 . 红外与激光工程, 2012, 41(1): 79-84.
  • 加载中
计量
  • 文章访问数:  275
  • HTML全文浏览量:  48
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-20
  • 修回日期:  2013-01-25
  • 刊出日期:  2013-08-25

主动偏振成像的系统结构概述

    作者简介:

    王霞(1972-),女,副教授,博士生导师,主要研究方向为光电检测、光谱分析及微光与红外成像。Email:angelniuniu@bit.edu.cn

基金项目:

微光夜视技术国防科技重点实验室基金(J20110503)

  • 中图分类号: O439

摘要: 偏振成像技术是近年来国内外研究的热点,在军事和民用方面都有巨大的应用价值。与被动偏振成像方式相比,主动偏振成像技术弥补了被动成像单纯依靠目标自身辐射或反射成像的不足,大大提高了成像距离和信噪比。引入主动光源,可以根据目标的出射辐射计算其Mueller矩阵,分析目标反射或散射光的强度、相干、消偏振等特性,进而得到目标的自身特性。介绍了近年来主动成像技术的发展;分析了系统结构组成及工作原理;最后给出了几种典型的主动偏振成像系统,并分析了这些系统的优缺点,指出了偏振成像系统的未来发展趋势。

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回