Abstract:
In this paper, the experiment on damage in K9 glass induced by pulsed CO2 laser under different repetition rates was carried out, which had a pulse width of 90 ns. The laser pulse energy was 10 J and the repetition rate was kept within the range of 100 Hz to 300 Hz. The damage morphologies of two kind repetition rates after laser irradiation were characterized. The experimental results indicate that the effect of laser irradiation on samples can be affected considerably by the change of laser repetition rate, and the intensity of damage morphology on the sample increases with the laser repetition rate, and the damage in K9 glass induced by pulsed CO2 laser is dominated by stress. As a result, the plasma detonation wave induced by laser occured, the material was broken result from the melting and evaporation of K9 glass. It is shown that the plasma detonation wave affected stress damage considerably, and this mechanical effect almost destroyed K9 glass sample. A numerical simulation was performed to calculate temperature and stress distributions in K9 glass sample irradiated by pulsed CO2 laser using finite element method. The model prediction was in line with the experiment data.