Abstract:
Experiments and simulations were performed to study the laser irradiation effects on thin aluminum alloy sheet in different tangential flow. The temperature traces of the aluminum alloy sheet in the nitrogen flow and air flow were consistent, which indicated that the combustion effect could hardly progress. The temperature of aluminum alloy sheet without flow was higher than those in the nitrogen flow and air flow at the same time. The center displacements traces of the aluminum alloy sheet in three different gas flows kept same shape with corresponding temperature traces, which implied that the tangential flow did not play a dominant role compared with the heat distortion induced by laser heating. Moreover, a numerical model was developed, with finite element analysis software ANSYS, to simulate the process of temperature and displacement of the aluminum alloy sheet in different gas flow and analysis how the power distribution and convection heat transfer impact the results was performed. The computed results present good agreements with experiment data. The results show that the tangential flow mainly take on cooling effect when the power density of laser is not high, especially in the cooling period when the laser irradiation ends.