留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间目标光学散射特性研究进展

韩意 孙华燕

韩意, 孙华燕. 空间目标光学散射特性研究进展[J]. 红外与激光工程, 2013, 42(3): 758-766.
引用本文: 韩意, 孙华燕. 空间目标光学散射特性研究进展[J]. 红外与激光工程, 2013, 42(3): 758-766.
Han Yi, Sun Huayan. Advances in space target optical scattering character research[J]. Infrared and Laser Engineering, 2013, 42(3): 758-766.
Citation: Han Yi, Sun Huayan. Advances in space target optical scattering character research[J]. Infrared and Laser Engineering, 2013, 42(3): 758-766.

空间目标光学散射特性研究进展

基金项目: 

武器装备预研项目(513210801);国家863 计划(2011AA7030105A)

详细信息
    作者简介:

    韩意(1986- ),男,博士生,主要从事空间光电信息处理及系统方面的研究。Email:hanyuxuan.han@163.com;孙华燕(1963- ),女,教授,博士生导师,博士,主要从事光电信息处理与对抗、图像处理方面的研究。Email:shy221528@vip.sina.com

    韩意(1986- ),男,博士生,主要从事空间光电信息处理及系统方面的研究。Email:hanyuxuan.han@163.com;孙华燕(1963- ),女,教授,博士生导师,博士,主要从事光电信息处理与对抗、图像处理方面的研究。Email:shy221528@vip.sina.com

  • 中图分类号: O432;TN249

Advances in space target optical scattering character research

  • 摘要: 空间目标光学散射特性建模与分析是空间光学监视系统论证设计、性能评价的前提和基础。以空间目标的可见光与激光散射特性为主要研究对象,分析了空间目标光学散射特性的基本研究内容和方法,介绍了国内外应用于卫星表面材料的比较典型的BRDF 模型,从卫星表面材料BRDF 测量与建模、目标可见光散射特性测量与仿真计算和空间目标LRCS 测量与仿真计算三个方面,介绍了国内外典型研究单位的研究成果以及下一步的研究发展方向。可为空间目标光学特性研究思路与方法提供借鉴。
  • [1]
    [2] Dai Yongjiang. Laser Radar Technology[M]. Beijing: Publish House of Electronics Industry, 2010: 409-412. (in Chinese)
    [3]
    [4] Mark Ackermann, John McGraw, Jeffrey Martion, et al. Blind search for micro satellites in LEO: optical signatures and search strategies[C]//AMOS, 2003: 1-24.
    [5] Xu Genxing. Optical Characteristics of Target and Environment[M]. Beijing: Astronautic Publishing House, 1995: 280-281. (in Chinese)
    [6]
    [7] Maxwell J R, Beard J, Weiner S, et al. Bidirectional reflectance model validation and utilization[R]. Ann Arbor: Environmental Research Institute of Michigan, 1973: 10-35.
    [8]
    [9] Shen Y J, Zhang Z M, Tsai B K. Bidirectional reflectance distribution function of rough silicon wafers[J]. International Journal of Thermophysics, 2001, 22(4): 1311-1326.
    [10]
    [11]
    [12] Torrance K E, Sparrow E M. Theory for off -specular reflection from roughened surfaces [J]. Journal of the Optical Society of America, 1967, 57(9): 1105-1114.
    [13]
    [14] Wu Zhensen, Xie Donghui, Xie Pinhua, et al. Modeling reflectance function from rough surface and algorithms [J]. Acta Optica Sinica, 2002, 22(8): 897-901. (in Chinese)
    [15] Sun Yinlong. Statistical ray method for deriving reflection models of rough surfaces [J]. Journal of the Optical Society of America, 2007, 24(3): 1105-1114.
    [16]
    [17] Ove Steinvall. Effects of target shape and reflection on laser radar cross sections[J]. Applied Optics, 2000, 39(24): 4381-4391.
    [18]
    [19]
    [20] Bui Tuong Phong. Illumination for computer generated pictures[J]. Communications of ACM, 1975, 18(6): 311-317.
    [21]
    [22] Yuan Yan, Sun Chengming, Zhang Xiubao. Measuring and modeling the spectral bidirectional reflection distribution function of space target's surface material [J]. Acta Physica Sinica, 2010, 59(3): 2097-2103. (in Chinese)
    [23] Wang Anxiang, Li Ping, Zeng Zhenchao. Experiment measurements on scattering characteristic of solar panels for satellite [J]. Basic Science Journal of Textile Universities, 2007, 20(3): 294-297. (in Chinese)
    [24]
    [25]
    [26] Wang Anxiang, Zhang Hanlu, Wu Zhensen, et al. Experiment measurements and optimal modeling of goal surface'visible spectrum BRDF [J]. Optical Technique, 2008, 34(5): 655-658. (in Chinese)
    [27]
    [28] Zhang Yi, Zheng Changwen, Wu Jiaze. Research on modeling and simulation of satellite surface optical reflection characteristics[J]. Computer Simulation, 2010, 27(9): 57-61. (in Chinese)
    [29]
    [30] Li Yanan, Sun Xiaobing, Qiao Yanli, et al. Experiment of optical characteristic sim ulation of space target [J]. Journal of Applied Optics, 2009, 30(6): 895-900. (in Chinese)
    [31] Li Yanan, Sun Xiaobing, Qiao Yanli, et al. Photopolarimetric characteristic of space target[J]. Opto-Electronic Engineering, 2010, 37(7): 24-29. (in Chinese)
    [32]
    [33]
    [34] Lu Daju, Wan Min, Yang Rui, et al. Reflectivity of measurement of spatial target's surface material [J]. High Power Laser and Particle Beams, 2008, 20(8): 1383-1386. (in Chinese)
    [35] Kennedy P K, Keppler K S, Thomas R J, et al. Validation and verification of the Laser Range Safety Tool (LRST)[C]// SPIE, 2003, 4953: 143-153.
    [36]
    [37]
    [38] Bush K, Crockett G A, Barnard C. Satellite discrimination from active and passive polarization signatures: simulation predictions using the TASAT satellite model[C]//SPIE, 2002, 4481: 46-57.
    [39] Crockett G A, Brunson R L. Visualization tool for advanced laser system development[C]//SPIE, 2002, 4724: 69-77.
    [40]
    [41] David Wellems, David Bowers. Laboratory imaging of satellites and orbital appearance estimation [C]//Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), 2007: 1-12.
    [42]
    [43]
    [44] David Bowers, David Wellems. Broadband spectral-polarimetric BRDF scan system and data for spacecraft materials[C]//AMOS, 2011: 1-9.
    [45]
    [46] Major Donald Bdard, Martin Lvesque, Brad Wallace. Measurement of the photometric and spectral BRDF of small Canadian satellites in a controlled environment [C]//AMOS, 2011: 1-10.
    [47] Sun Chengming, Zhang Wei, Wang Zhile. Application of BRDF for modeling on the visible reflection characteristics of spatial targets[J]. Optical Technique, 2008, 34(5): 750-757. (in Chinese)
    [48]
    [49] Zhang Wei, Wang Hongyuan, Wang Zhile, et al. Modeling method for visible scattering properties of space target [J]. Acta Photonica Sinica, 2008, 37(12): 2462-2467. (in Chinese)
    [50]
    [51] Wang Hongyuan, Zhang Wei, Wang Zhile. Ultraviolet dynamic characteristics of space satellites based on bidirectional reflection distribution function[J]. Journal of Applied Optics, 2009, 30(3): 410-416. (in Chinese)
    [52]
    [53] Bao Wenzhuo, Cong Mingyu, Zhang Wei, et al. An optical characteristics calculating method based on surface mesh-creation for space targets [J]. Journal of Harbin Institute of Technology, 2010, 42(5): 710-715. (in Chinese)
    [54]
    [55]
    [56] Wang Hongyuan, Zhang Wei, Wang Zhile. Visible characteristics of space satellite based on Nth cosine scattering distribution[J]. Acta Optica Sinica, 2008, 28(3): 593-598. (in Chinese)
    [57]
    [58] Wang Fugang, Zhang Wei, Wang Hongyuan. Reflection characteristics of on-orbit satellite based on bidirectional reflectance distribution function[J]. Opto-Electronic Engineering, 2011, 38(9): 6-12. (in Chinese)
    [59]
    [60] Bao Wenzhuo, Cong Mingyu, Zhang Wei, et al. A verification and validation method for calculation model of space target characteristics used for short range optical navigation[J]. Acta Optica Sinica, 2010, 30(8): 2249-2256. (in Chinese)
    [61] Sun Chengming, Yuan Yan, Zhang Xiubao. Modeling of infrared characteristics of deep space target [J]. Acta Physica Sinica, 2010, 59(10): 7523-7530. (in Chinese)
    [62]
    [63]
    [64] Yuan Yan, Sun Chengming, Zhang Xiubao, et al. Analysis of influence of attitude variationon visible characteristics of space target[J]. Acta Optica Sinica, 2010, 30(9): 2748-2752. (in Chinese)
    [65]
    [66] Yuan Yan, Sun Chengming, Huang Fengzhen, et al. Modeling of ultraviolet characteristics of deep space target[J]. Acta Physica Sinica, 2011, 60(8): 0895011-8. (in Chinese)
    [67] Lan Chaozhen. Modeling and detecting capability analysis of space-based space object optical observation system [D]. Zhengzhou: PLA Information Engineering University, 2009: 49-72. (in Chinese)
    [68]
    [69] Cao Yunhua, Wu Zhensen, Zhang Hanlu, et al. Research on visible light scattering of spatial targets based on spectral BRDF of target samples [J]. Acta Photonica Sinica, 2008, 37(11): 2264-2268. (in Chinese)
    [70]
    [71]
    [72] Yang Ming, Han Lei, Wu Xiaodi, et al. Visible light scattering of satellite based on bidirectional reflectance distribution function [J]. Laser Optoelectronics Progress, 2010, 11, 112901: 1-5. (in Chinese)
    [73]
    [74] Funge, Alistair D. Daytime detection of space objects [D]. Air Force Institute of Technology, 2005: 1-65.
    [75] Daniel Fulcoly, Katharine Kalamaroff, Francis Chun. Optimizing site locations for determining shape from photometric light curves[C]//AMOS, 2009: 1-11.
    [76]
    [77] Cody Singletary, Francis Chun. Simulating comlex satellite and a space-based surveillance sensor simulation[C]//AMOS, 2009: 1-10.
    [78]
    [79]
    [80] Doyle Hall. Surface Material Characterization from Multi-band Optical Observations[C]//AMOS, 2010: 1-15.
    [81] https://www.agi.com
    [82]
    [83]
    [84] Li Liangchao, Wu Zhensen, Guo Lixin. Study of LRCS of a multi-material coated complex object [J]. Journal of Xidian University, 2006, 33(2): 211-214. (in Chinese)
    [85] Zhang Geng, Wu Zhensen, Jin Yan, et al. Calculation of space object LRCS [J]. Chinese Journal of Radio Science, 2007, 22(S): 83-85. (in Chinese)
    [86]
    [87]
    [88] Gu Jun, Wang Xiaobing, Dai Fei. A study on theoretical modeling of LRCS of targets based on BRDF data [C]// IEEE Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 2011: 1165-1168.
    [89]
    [90] Han Yi, Sun Huayan, Li Yingchun, et al. Simulation of space object laser radar cross section[J]. Infrared and Laser Engineering, 2010, 39(5): 819-823. (in Chinese)
    [91]
    [92] Sun Huayan, Han Yi. Research of space object active detection ladar system imaging simulation [C]//SPIE, 2009, 7651(0D):1-7.
    [93] Jacob D, Gatt P, Nichols T. Overview of LMCT's advanced ladar signal simulator (ALASS)[C]//SPIE, 2008, 6950(0L): 1-12.
    [94]
    [95] Lukesh G, Chandler S, Voelz D. Analysis of satellite laser optical cross sections from the active imaging testbed [C]// SPIE, 2002, 4538: 24-33.
  • [1] 周杰, 杨泽后, 宋帅, 张国娟, 毛一江, 李晓锋, 金凡皓, 冯力天, 陈春利, 周鼎富.  应用于区域三维风场测量的船载激光测风雷达 . 红外与激光工程, 2020, 49(S2): 20200189-20200189. doi: 10.3788/IRLA20200189
    [2] 胡朝斌, 金星, 常浩.  空间翻滚目标激光消旋概念及天基应用分析 . 红外与激光工程, 2020, 49(8): 20200203-1-20200203-9. doi: 10.3788/IRLA20200203
    [3] 王建峰, 姜晓军, 李陶然, 张晓明, 葛亮.  雷达定标卫星光学散射特性研究 . 红外与激光工程, 2020, 49(1): 0105003-0105003(8). doi: 10.3788/IRLA202049.0105003
    [4] 陈博, 穆磊, 张彪, 许传龙.  地形条件对空间目标细致光谱辐射特性的影响 . 红外与激光工程, 2019, 48(12): 1213003-1213003(8). doi: 10.3788/IRLA201948.1213003
    [5] 马磊, 张子昂.  双向反射分布函数测量装置设计及指向精度分析 . 红外与激光工程, 2019, 48(5): 517003-0517003(6). doi: 10.3788/IRLA201948.0517003
    [6] 陈杉杉, 张合, 徐孝彬.  脉冲激光周向探测地面目标捕获建模与仿真 . 红外与激光工程, 2018, 47(2): 206001-0206001(11). doi: 10.3788/IRLA201847.0206001
    [7] 陈川, 易维宁, 崔文煜.  基于参考源的空间目标红外辐射特性测量 . 红外与激光工程, 2018, 47(8): 804004-0804004(8). doi: 10.3788/IRLA201847.0804004
    [8] 李文豪, 刘朝晖, 穆 猷, 梁冬生, 杨蕊.  基于辐射散热的空间目标红外特性建模与研究 . 红外与激光工程, 2017, 46(6): 604003-0604003(7). doi: 10.3788/IRLA201746.0604003
    [9] 杨辉, 赵雪松, 孙彦飞, 王铁栋, 叶结松.  荧光偏振短距激光雷达测量生物战剂/气溶胶 . 红外与激光工程, 2017, 46(10): 1030004-1030004(8). doi: 10.3788/IRLA201767.1030004
    [10] 樊长坤, 李琦, 赵永蓬, 陈德应.  不同粗糙度抛物面的2.52 THz后向散射测量 . 红外与激光工程, 2017, 46(11): 1125005-1125005(6). doi: 10.3788/IRLA201746.1125005
    [11] 王建军, 黄晨, 李舰艇.  空间目标红外辐射测量系统标定技术 . 红外与激光工程, 2016, 45(4): 404002-0404002(5). doi: 10.3788/IRLA201645.0404002
    [12] 庄绪霞, 阮宁娟, 赵思思.  基于点目标测量的空间目标特性识别技术 . 红外与激光工程, 2016, 45(S1): 194-199. doi: 10.3788/IRLA201645.S126001
    [13] 汪洪源, 陈赟.  天基空间目标红外动态辐射特性建模与仿真 . 红外与激光工程, 2016, 45(5): 504002-0504002(6). doi: 10.3788/IRLA201645.0504002
    [14] 杨作运, 王大勇, 王云新, 戎路, 杨登才.  基于激光相控阵原理的相位调制器半波电压测量方法 . 红外与激光工程, 2015, 44(3): 906-910.
    [15] 康文运, 宋小全, 韦震.  白天空间目标激光测距微弱信号探测方法 . 红外与激光工程, 2014, 43(9): 3026-3029.
    [16] 孙腾飞, 张骏, 吕海兵, 袁晓东, 曹增辉, 郑田甜.  光学镜面污染对激光传输特性的影响 . 红外与激光工程, 2014, 43(5): 1444-1448.
    [17] 王安祥, 吴振森.  光散射模型中遮蔽函数的参数反演 . 红外与激光工程, 2014, 43(1): 332-337.
    [18] 陆斌, 吕俊伟.  激光器阵列测量小视场成像烟幕干扰效能 . 红外与激光工程, 2013, 42(5): 1161-1165.
    [19] 李雅男, 孙晓兵, 毛永娜, 乔延利, 洪津.  空间目标光谱偏振特性 . 红外与激光工程, 2012, 41(1): 205-210.
    [20] 张雷洪, 孙刘杰, 马秀华.  激光跟踪中目标卫星表面BRDF对回波信号的影响 . 红外与激光工程, 2012, 41(8): 2048-2052.
  • 加载中
计量
  • 文章访问数:  300
  • HTML全文浏览量:  47
  • PDF下载量:  415
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-12
  • 修回日期:  2012-08-14
  • 刊出日期:  2013-03-25

空间目标光学散射特性研究进展

    作者简介:

    韩意(1986- ),男,博士生,主要从事空间光电信息处理及系统方面的研究。Email:hanyuxuan.han@163.com;孙华燕(1963- ),女,教授,博士生导师,博士,主要从事光电信息处理与对抗、图像处理方面的研究。Email:shy221528@vip.sina.com

    韩意(1986- ),男,博士生,主要从事空间光电信息处理及系统方面的研究。Email:hanyuxuan.han@163.com;孙华燕(1963- ),女,教授,博士生导师,博士,主要从事光电信息处理与对抗、图像处理方面的研究。Email:shy221528@vip.sina.com

基金项目:

武器装备预研项目(513210801);国家863 计划(2011AA7030105A)

  • 中图分类号: O432;TN249

摘要: 空间目标光学散射特性建模与分析是空间光学监视系统论证设计、性能评价的前提和基础。以空间目标的可见光与激光散射特性为主要研究对象,分析了空间目标光学散射特性的基本研究内容和方法,介绍了国内外应用于卫星表面材料的比较典型的BRDF 模型,从卫星表面材料BRDF 测量与建模、目标可见光散射特性测量与仿真计算和空间目标LRCS 测量与仿真计算三个方面,介绍了国内外典型研究单位的研究成果以及下一步的研究发展方向。可为空间目标光学特性研究思路与方法提供借鉴。

English Abstract

参考文献 (95)

目录

    /

    返回文章
    返回