Abstract:
Hadamard transform imaging spectrometer is a multi-channel detection digital transform spectrometer detection technology. The spectromter used this technology to achieving spectral imaging. Based on the digital micromirror array device of the Hadamard transform spectrometer working principles and the instrument, a series of precision laboratory calibration methods were researched and employed for the Hadamard transform imaging spectrometer. A point light source in long distance was used for the pixel response nonuniformity correction of the CMOS detector. The uncertainty of the relative calibration was 4.6%. Solar simulator and spectral radiometer were used in absolute radiation calibration of the whole system, and the uncertainty of the absolute radiation calibration was 8.92%. Both of the uncertainty of relative calibration and the uncertainty of the absolute radiation calibration met the requirements of the projection. By actual objects imaging, the laboratory calibration methods of the Hadamard transform imaging spectrometer are proved accurate.