超音速导弹温度场建模与仿真

Modeling and simulation of supersonic missile temperature distribution

  • 摘要: 超音速导弹温度场的计算对其红外辐射特性研究具有重要的参考价值。对超音速导弹的两个主要辐射源蒙皮和羽流进行了深入分析,建立了超音速导弹温度场模型,仿真验证了模型的可行性。采用理论模型与半经验公式对导弹温度分布进行了计算,将羽流近似成超音速轴对称无伴随绝热等熵流,利用特征线法计算气流参数分布。此外,建立了超音速导弹尾焰形状的理论模型与计算方法。最后进行仿真,计算了导弹各部分的温度分布,并与实验结果比较,结果表明,该方法是一种计算超音速导弹温度分布的有效方法。

     

    Abstract: The calculation of supersonic missile temperature distribution plays an important role in the study of its infrared characteristic. Two primary radiation points of supersonic missile-fuselage and plume, were analyzed deeply. A temperature distribution model of supersonic missile was built, and the feasibility was proved by simulation. Firstly, a theoretical model and semi-empirical formula were adopted to calulate the temperature distribution of supersonic missile. Secondly, in the model, the plume was disposed as supersonic circular symmetrical adiabatic isentropic airflow approximately. The distribution of air airflow parameters were calculated by the characteristic method line. Thirdly, a theoretic model and calculation method of the plume shape were established. Finally, taking one missile as an example, the computing model was used to compute the temperature distribution of supersonic missile. The results indicate that this is an effective method to calulate the temperature distribution of supersonic missile according to the comparison between the result values and the measured values.

     

/

返回文章
返回