空间反射镜的轻量化及支撑设计研究

Lightweight and mounting design for primary mirror in space camera

  • 摘要: 大型空间遥感仪器为适应苛刻的发射和工作环境,通常要求具有很高的热、力学性能,并且对重量有严格限制。这对大口径反射镜及其支撑结构的质量、刚度和环境适应性提出了很高的要求。针对某型号620 mm口径光学遥感仪器的主镜及支撑结构进行了详细的分析计算、设计和试验验证。通过对比多种支撑方式的不同特性,选择了符合仪器要求的质量轻、刚度高的中心支撑;并利用等强度原理设计了放射状轻量化形式;在支撑环节上,利用柔性材料解决了因温度变化产生的局 部接触应力增加的问题,有效减小了结构对光学镜面的影响。经测试反射镜重15.2 kg,轻量化率71.2%,支撑零件3.5 kg;组件一阶模态420 Hz;面形精度优于0.03 RMS,满足仪器要求。目前该仪器已投入使用,在轨性能良好。

     

    Abstract: The large space remote sensing instrument has high requirements for heating and mechanical characteristics, as well as strict limitation in weight, to adapt to severe launching and working environment. Thus the mirror and supporting system is stringent in weight, rigidity and environmental flexibility. The paper analyzed, designed and demonstrated the parameters of a 620 mm remote sensing mirror and its mounting structure. The central mounting system was served to meet the light weight and rigidity requirements compared with the other mounting methods. Radical weight-reduction slot morphology was developed in accordance with equal strength principle. The partial contact stress would increase as temperature changed. A flexible material was utilized to solve the problem, which would mitigate the structure effect to optical mirror. The results show that the weight of mirror is 15 kg and mounting accessory is 3.5 kg, with the weight reduction rate of 71.2%. The first mode is 420 Hz;The profile accuracy of mirror is 0.03 RMS. The technical parameters are stable and satisfied with the optical system requirements under various tests. The primary mirror project is implemented in the space and attains the expected goal.

     

/

返回文章
返回