Analysis on mirrors installation error of high-accuracy long focal length measurement system
-
摘要: 大口径长焦距测量系统中,为了缩小测量系统的尺寸,加入两块反射镜形成折返光路。折返光路中两块反射镜的安装误差是影响测量结果的重要因素。将条纹理解成条纹成像面上的点光源阵列,通过这一思路分析了反射镜偏转角度对最终检测结果的影响。研究了反射镜偏转角度与反射镜单位法向量的计算公式,结合反射定律的矩阵形式,求出入射光矢量到出射光矢量的变换矩阵。基于反射镜的单位法向量、出射光的方向向量,利用解析几何得到理想接收屏上条纹所在直线的方程,求出接收屏上测得的条纹的角度。计算了两块反射镜小角度旋转的49种组合情况下,莫尔条纹角度的偏差结果。使用自准直仪分光路的方法调整反射镜,将反射镜安装误差控制在1以内,莫尔条纹角度的偏差在10-4数量级。通过实验验证莫尔条纹的测量精度实际达到0.005,充分说明了反射镜的调整效果。Abstract: As to minimize size of the measurement system of large size and ultra-long focal length lens, two mirrors are used to change light path. In this case, installation error of the two mirrors added may be a large obstacle to accurate measurement of ultra-long focal length lens. For the sake of analyzing how installation error of two mirrors infect the angle of Moir stripes on receiver, Moir stripes are understood as parallel lines which composed of point light source with certain light-path vector. This approach proposed uses the calculation formula from mirror deflection angle to the reflector unit normal vector, and the matrix form of the law of reflection, to calculate the relationship matrix from vector of incident light to vector of exit light. Based on unit normal vector of two mirrors, incident light-path vector, exit light-path vector, and analytic geometry, equation of line on which image of point light source place can be presented, so we can get the angle of Moir stripes on receiver and so is the angle error caused by installation error of the two mirrors added into light path. In addition, the angle error of Moir stripes is calculated theoretically in 49 different situations of small mirrors deflection smaller than 1 degree. The results indicate that the installation error of the two mirrors should be taken into consideration. A new method by using autocollimator to adjust the installation error of the two mirrors is proposed, installation error of the two mirrors can be controlled to lower than 1 through this method. Moir stripes angle error should be better than(10-4) order of magnitude in this situation. Experimental results show that Moir stripes angle measurement error is 0.005 degree, which fully illustrates the effect of mirrors adjustment when this system is used for the measurement of ultra-long focal length.
-
[1] [2] Jin Xiaorong, Zhang Jinchun, Bai Jian, et al. Calibration method for high-accuracy measurement of long focal length with Talbot interferometry[J]. Applied Optics, 2012, 51(13): 2407-2413. (in Chinese) [3] [4] Zhao W, Sun R, Qiu L, et al. Laser differential confocal ultra-long focal length measurement[J]. Optics Express, 2009, 17(22): 20051-20062. [5] [6] Sun Chen, Shen Yibing, Bai Jian, et al. The precision limit analysis of long focal length testing based on talbot effect of ronchi grating[J]. Acta Photonica Sinica, 2004, 33(10): 1214-1217. (in Chinese) [7] Xu Chuangang, Song Liquan. Design and realization of infrared complicated scene simulation system[J]. Infrared and Laser Engineering, 2005, 34(2): 241-242, 252. (in Chinese) [8] 孙琛, 沈亦兵, 白剑, 等. Ronchi光栅Talbot效应长焦距测量的准确度极限研究[J]. 光子学报, 2004, 33(10): 1214-1217. [9] [10] Wu Yaping, Zhang Tianxu. Simulation of infrared image and the simulation software[J]. Infrared and Laser Engineering, 2000, 29(4): 1-3. (in Chinese) [11] [12] Shi Yali, Gao Yunguo, Deng Weijie. Model for computer-aided alignment of reflective optical system[J]. Laser Infrared, 2009, 39(4): 427-430. (in Chinese) [13] Faugras O, Luong Q, Maybank S. Camera selfcalibration: theory and experiments[C]//ECCV, 1992: 321-334. [14] 徐传刚, 宋利权. 红外复杂场景仿真系统的设计与实现. 红外与激光工程, 2005, 34(2): 241-242, 252. [15] Li Xiaotong, Cen Zhaofeng. Geometrical Optics, Aberrations and Optical Design[M]. Hangzhou: Zhejiang University Press, 2003: 6-7. (in Chinese) [16] [17] [18] Yang Guoguang. Modern Optical Measurement Technology[M]. Hangzhou: Zhejiang University Press, 1997: 85-86. (in Chinese) [19] 吴亚平, 张天序. 红外图像的计算机仿真及仿真软件[J]. 红外与激光工程, 2000, 29(4): 1-3. [20] Ou Jiaming, Wang Ruili, Zhang Shulian, et al. Three forms of expression about reflection law[J]. Journal of Yunnan Normal University, 2000, 20(1): 57-61. (in Chinese) [21] [22] [23] 史亚莉, 高云国, 邓伟杰. 反射光路的计算机辅助装调模型[J]. 激光与红外, 2009, 39(4): 427-430. [24] [25] [26] [27] 李晓彤, 岑兆丰. 几何光学相差光学设计[M]. 杭州: 浙江大学出版社, 2003: 6-7. [28] [29] [30] 杨国光. 近代光学测试技术[M]. 杭州: 浙江大学出版社, 1997: 85-86. [31] [32] [33] 欧家鸣, 王瑞丽, 张书练, 等. 反射定律的三种表达形式[J]. 云南师范大学学报, 2000, 20(1): 57-61. -

计量
- 文章访问数: 284
- HTML全文浏览量: 51
- PDF下载量: 181
- 被引次数: 0