Abstract:
In order to study the band gap characteristics of photonic crystal doped anisotropic material, an (AB)10F(BA)10 symmetrically structured one-dimensional photonic crystal was designed and its transmission coefficient was numerical calculated by Berreman transmission matrix. It is found that the two defect modes in the 700-1 000 nm photonic band gap exhibits red shift and their transmission coefficient changes periodically with the increase of thickness of the defect layer F. When changing the azimuthal angle of the uniaxial crystal in F, the defect mode generated by X polarized light moves toward long-wavelength direction and its transmission coefficient changes regularly. But the one generated by Y polarized light has no change. When increasing the during 0-90, a new defect mode appears. These properties of defect modes are of significance in application of filter design.