留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合激光损伤CMOS图像传感器实验研究

朱孟真 刘云 米朝伟 魏靖松 陈霞 田方涛 冯苏茂 王赛

朱孟真, 刘云, 米朝伟, 魏靖松, 陈霞, 田方涛, 冯苏茂, 王赛. 复合激光损伤CMOS图像传感器实验研究[J]. 红外与激光工程, 2022, 51(7): 20210537. doi: 10.3788/IRLA20210537
引用本文: 朱孟真, 刘云, 米朝伟, 魏靖松, 陈霞, 田方涛, 冯苏茂, 王赛. 复合激光损伤CMOS图像传感器实验研究[J]. 红外与激光工程, 2022, 51(7): 20210537. doi: 10.3788/IRLA20210537
Zhu Mengzhen, Liu Yun, Mi Chaowei, Wei Jingsong, Chen Xia, Tian Fangtao, Feng Sumao, Wang Sai. Experimental study on a CMOS image sensor damaged by a composite laser[J]. Infrared and Laser Engineering, 2022, 51(7): 20210537. doi: 10.3788/IRLA20210537
Citation: Zhu Mengzhen, Liu Yun, Mi Chaowei, Wei Jingsong, Chen Xia, Tian Fangtao, Feng Sumao, Wang Sai. Experimental study on a CMOS image sensor damaged by a composite laser[J]. Infrared and Laser Engineering, 2022, 51(7): 20210537. doi: 10.3788/IRLA20210537

复合激光损伤CMOS图像传感器实验研究

doi: 10.3788/IRLA20210537
基金项目: 国防预研基金(30102050101);国防科研重点项目(KYWHJWJK1702)
详细信息
    作者简介:

    朱孟真,男,讲师,硕士,主要从事固态激光器及激光毁伤对抗技术方面的研究

  • 中图分类号: TN248.1

Experimental study on a CMOS image sensor damaged by a composite laser

Funds: National Defense Pre-Research Fund(30102050101);Key National Defense Research Projects(KYWHJWJK1702)
  • 摘要: 激光是对抗光电侦察的有效方式。为了提高损伤效能,探索了复合激光损伤光电探测器的新思路。分别开展了波长1064 nm和532 nm、脉宽10 ns的激光及其双波长复合激光,以及波长1064 nm、脉宽0.4 ms和10 ns激光及其双脉宽复合激光对CMOS图像传感器的损伤效能实验。结果表明,双波长复合激光对CMOS造成严重损伤时的基频光能量是单独1064 nm激光的77.8%,是单独532 nm激光的62.5%;双脉宽复合激光损伤时,脉宽0.4 ms激光的能量密度降低为单独作用时的1.7%,脉宽10 ns激光的能量密度降低为单独作用时的76.4%。这一发现为多制式复合激光高效光电对抗提供了新的思路和参考。
  • 图  1  CMOS基本结构示意图

    Figure  1.  Structure diagram of CMOS

    图  2  双波长复合激光损伤实验方案示意图

    Figure  2.  Schematic diagram of double wavelength composite laser damage experimental scheme

    图  3  双脉宽复合激光损伤实验方案示意图

    Figure  3.  Schematic diagram of double pulse width composite laser damage experimental scheme

    图  4  CMOS在10 ns激光能量不断增加时的损伤效果图。(a)~(c) 波长1064 nm激光对CMOS损伤变化效果图;(d)~(f) 波长532 nm激光对CMOS损伤变化效果图

    Figure  4.  Damage effect picture of the CMOS under increasing 10 ns laser energy. (a)-(c) Damage effect of 1064 nm laser on CMOS; (d)-(f) Damage effect of 532 nm laser on CMOS

    图  5  带镜头的CMOS在1064 nm激光能量增加时的损伤效果图。(a) 0.4 ms激光对CMOS损伤效果图;(b)~(e) 10 ns激光对CMOS损伤效果图

    Figure  5.  Damage effect picture of the CMOS with lens under increasing 1064 nm laser energy. (a) Damage effect of 0.4 ms laser on CMOS; (b)-(e) Damage effect of 10 ns laser on CMOS

    图  6  双波长复合激光对CMOS损伤图像。(a)绿色光斑损伤;(b)交叉线损伤;(c)完全损伤

    Figure  6.  Damage effect picture of double wavelength composite laser on CMOS. (a) Green spot damage; (b) Cross line damage; (c) Complete damage

    图  7  双脉宽复合激光对CMOS损伤图像。(a)白点损伤;(b)交叉线损伤;(c)完全损伤

    Figure  7.  Damage effect picture of double pulse width composite laser on CMOS. (a) White spot damage; (b) Cross line damage; (c) Complete damage

    表  1  不同脉宽的激光对带镜头的CMOS的损伤阈值

    Table  1.   Damage threshold of CMOS with lens by different pulse width laser

    Pulse widthLaser pulse power
    density/W·cm−2
    Laser pulse energy
    density/mJ·cm−2
    0.4 ms9.6×1033.84×103
    10 ns4×1054
    下载: 导出CSV

    表  2  双波长复合激光和单波长激光损伤阈值对比

    Table  2.   Comparison of damage threshold between double wavelength composite laser and single wavelength laser

    Wavelength/nmOutput laser energy/mJComplete damage
    Laser energy/mJLaser pulse power
    density/W·cm-2
    Laser pulse energy
    density/mJ·cm-2
    1064451.913.8×107380.2
    532560.801.6×107159.7
    1064+532351.192.4×107236.9
    下载: 导出CSV

    表  3  双脉宽复合激光和单脉宽激光损伤阈值对比

    Table  3.   Comparison of damage threshold between double pulse width composite laser and single pulse width laser

    Pulse widthSpot damageComplete damage
    Laser energy/mJLaser energy/mJLaser pulse power density/W·cm−2Laser pulse energy density/mJ·cm−2
    10 ns1.481.913.8×107380.2
    0.4 ms--9.1×1053.65×105
    10 ns+0.4 ms1.03+311.46+312.9×107+1.5×104 (10 ns laser action time)

    1.5×104 (other time)
    290.6+6.17×103
    下载: 导出CSV
  • [1] 孙志君, 欧代永. 光图像传感器技术及其武器装备应用新进展[J]. 半导体光电, 2005: 26: 170-175. doi:  10.3969/j.issn.1001-5868.2005.z1.049

    Sun Zhijun, Ou Daiyong. Solid state optical imaging sensore tehnologies and their new applications in military equipments [J]. Semiconductor Optoelectronics, 2005, 26: 170-175. (in Chinese) doi:  10.3969/j.issn.1001-5868.2005.z1.049
    [2] 叶结松, 朱岳超. 浅析激光对抗及其发展趋势[J]. 红外与激光工程, 2007, 36(S2): 458-460.

    Ye Jiesong, Zhu Yuechao. Analyses of laser countermeasure and it's development trends [J]. Infrared and Laser Engineering, 2007, 36(S2): 458-460. (in Chinese)
    [3] 朱孟真, 陈霞, 刘旭, 等. 战术激光武器反无人机发展现状和关键技术分析[J]. 红外与激光工程, 2021, 50(7): 20200230.. doi:  10.3788/IRLA20200230

    Zhu Mengzhen, Chen Xia, Liu Xu, et al. Situation and key technology of tactical laser anti-UAV [J]. Infrared and Laser Engineering, 2021, 50(7): 20200230. (in Chinese) doi:  10.3788/IRLA20200230
    [4] 李泽文. 毫秒激光对硅及硅基光电探测器损伤机理研究[D]. 南京理工大学, 2015.

    Li Zewen. Research on the damage mechanisms of silicon and silicon-based photodetectors irradiated by millisecond laser [D]. Nanjing: Nanjing University of Science & Technology, 2015. (in Chinese)
    [5] 李化, 王玺, 聂劲松, 等. 脉冲宽度对CCD探测器激光损伤效果的影响[J]. 红外与激光工程, 2013, 42(S2): 403-406.

    Li Hua, Wang Xi, Nie Jinsong, et al. Influence of pulse width on damage effects of CCD detector induced by laser [J]. Infrared and Laser Engineering, 2013, 42(S2): 403-406. (in Chinese)
    [6] 冯爱新, 庄绪华, 薛伟, 等. 1064 nm、532 nm、355 nm波长脉冲激光辐照多晶硅损伤特性研究[J]. 红外与激光工程, 2015, 44(02): 461-465. doi:  10.3969/j.issn.1007-2276.2015.02.011

    Feng Aixin, Zhuang Xuhua, Xue Wei, et al. Damage characteristics of polysilicon under wavelengths of 1064 nm, 532 nm and 355 nm laser irradiation [J]. Infrared and Laser Engineering, 2015, 44(2): 461-465. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.02.011
    [7] 吕雪明、李泽文、张检民, 等. 不同延时的组合脉冲激光致硅表面损伤研究[J]. 激光技术, 2020, 44(6): 695-699.

    Lv Xueming, Li Zewen, Zhang Jianmin, et al. Surface damage study of silicon induced by combined millisecond and nanosecond laser with different delays [J]. Laser Technology, 2020, 44(6): 695-699. (in Chinese)
    [8] 张鑫, 牛春晖, 马牧燕, 等. 三波长单脉冲纳秒激光损伤CCD实验研究[J]. 应用激光, 2020, 40(02): 300-307.

    Zhang Xin, Niu Chunhui, Ma Muyan, et al. Experimental study on three-wavelength single-pulse nanosecond laser damage CCD [J]. Applied Laser, 2020, 40(2): 300-307. (in Chinese)
    [9] 吴迪, 吕勇, 牛春晖. 多脉冲激光对CCD探测器的损伤研究[J]. 应用激光, 2019, 39(2): 17-24.

    Wu Di, Lv Yong, Niu Chunhui. Damage of CCD detector by multi-pulse laser [J]. Applied Laser, 2019, 39(2): 17-24. (in Chinese)
    [10] 韩敏, 聂劲松, 豆贤安, 等. 基于激光不同加载方式下CCD损伤特性的时间演化规律[J]. 发光学报, 2019, 040(006): 788-794. doi:  10.3788/fgxb20194006.0788

    Han Min, Nie Jinsong, Dou Xian'an, et al. Temporal evolution characteristics of CCD detector based on different laser loading methods [J]. Chinese Journal of Luminescence, 2019, 40(6): 788-794. (in Chinese) doi:  10.3788/fgxb20194006.0788
    [11] 栗兴良, 牛春晖, 马牧燕, 等. 单脉冲激光损伤CCD探测器的有限元仿真[J]. 激光技术, 2016, 040(005): 730-733.

    Li Xingliang, Niu Chunhui, Ma Muyan, et al. Finite element simulation of damage characteristics of CCD detectors under single-laser-pulse irradiation [J]. Laser Technology, 2016, 40(5): 730-733. (in Chinese)
    [12] 张明鑫, 聂劲松, 孙可, 等. CCD损伤进程中光学成像系统激光猫眼回波实验研究[J]. 光子学报, 2019, 48(003): 17-24.

    Zhang Mingxin, Nie Jinsong, Sun Ke, et al. Experimental study on laser cat's eye echoes from optical imaging system in the process of CCD damaging [J]. Acta Photonica Sinica, 2019, 48(3): 17-24. (in Chinese)
    [13] 盛良, 张震, 张检民, 等. 连续激光辐照CMOS相机的像素翻转效应及机理[J]. 红外与激光工程, 2016, 45(6): 39-42. doi:  10.3788/IRLA201645.0606004

    Sheng Liang, Zhang Zhen, Zhang Jianmin, et al. Pixel upset effect and mechanism of CW laser irradiated CMOS camera [J]. Infrared and Laser Engineering, 2016, 45(6): 0606004. (in Chinese) doi:  10.3788/IRLA201645.0606004
    [14] 周旋风, 陈前荣, 王彦斌, 等. 脉冲激光辐照CMOS相机的图像间断现象及机理[J]. 红外与激光工程, 2019, 48(03): 90-95. doi:  10.3788/IRLA201948.0606004

    Zhou Xuanfeng, Chen Qianrong, Wang Yanbin, et al. Image interrupt effect and mechanism of pulse laser irradiated CMOS camera [J]. Infrared and Laser Engineering, 2019, 48(3): 0306002. (in Chinese) doi:  10.3788/IRLA201948.0606004
    [15] 王昂, 郭锋, 朱志武, 等. 连续激光与单脉冲纳秒激光对CMOS的损伤效应[J]. 强激光与粒子束, 2014, 26(9). doi:  10.11884/HPLPB201426.090201

    Wang Ang, Guo Feng, Zhu Zhiwu, et al. Comparative study of hard CMOS damage irradiatedby CW laser and single-pulse ns laser [J]. High Power Laser and Particle Beams, 2014, 26(9). (in Chinese) doi:  10.11884/HPLPB201426.090201
    [16] 雷鹏, 孙可, 李化, 等. 猫眼回波图像随CMOS器件激光损伤变化的实验研究[J]. 中国激光, 2016, 043(006): 1-7.

    Lei Peng, Sun Ke, Li Hua, et al. Experimental study on the change of cat eye echo pattern with laser damage of CMOS detector [J]. Chinese Journal of Lasers, 2016, 43(6): 0601001. (in Chinese)
    [17] 林均仰, 舒嵘, 黄庚华, 等. 激光对CCD及CMOS图像传感器的损伤阈值研究[J]. 红外与毫米波学报, 2008, 27 (06): 475-478. doi:  10.3321/j.issn:1001-9014.2008.06.018

    Lin Junyang, Shu Rong, Huang Genghua, et al. Study on threshold of laser damage to CCD and CMOS image sensors [J]. Journal of Infrared and Millimeter Waves, 2008, 27(6): 475-478. (in Chinese) doi:  10.3321/j.issn:1001-9014.2008.06.018
    [18] 郭锋. 激光对CMOS和CCD的辐照效应对比研究[D]. 国防科学技术大学研究生院, 2013.

    Guo Feng. Comparative study on the irradiation effect of the laser to CMOS and CCD [D]. Changsha: Graduate School of National University of Defense Technology, 2013. (in Chinese)
    [19] 高润, 牛春晖, 李晓英. 632nm激光对CCD和CMOS的干扰实验及机理分析[J]. 激光杂志, 2016, 37(9): 5-9.

    Gao Run, Niu Chunhui, Li Xiaoying. Experiment and mechanism analysis of 632 nm laser jamming CCD and CMOS [J]. Laser Journal, 2016, 37(9): 5-9. (in Chinese)
    [20] 王雪. 光电传感器激光致盲与损毁技术研究[D]. 西安电子科技大学, 2018.

    Wang Xue. Study on laser blindness and damage technology of photoelectric sensors [D]. Xi'an: Xidian University, 2018. (in Chinese)
    [21] 王景楠, 聂劲松. 超连续谱光源辐照可见光CMOS图像传感器的实验研究[J]. 红外与激光工程, 2017, 46(1): 0106004. doi:  10.3788/IRLA201746.0106004

    Wang Jingnan, Nie Jinsong. Experimental study on supercontinuum laser irradiating a visible light CMOS imaging sensor [J]. Infrared and Laser Engineering, 2017, 46(1): 0106004. (in Chinese) doi:  10.3788/IRLA201746.0106004
    [22] 赖莉萍, 付博, 张蓉竹. 宽谱光源对CMOS阵列电串扰的影响[J]. 红外与激光工程, 2017, 46(1): 0120005. doi:  10.3788/IRLA201746.0120005

    Lai Liping, Fu Bo, Zhang Rongzhu. Effect of broadband sources on electrical crosstalk of CMOS array [J]. Infrared and Laser Engineering, 2017, 46(1): 0120005. (in Chinese) doi:  10.3788/IRLA201746.0120005
    [23] 刘传军. CMOS图像传感器的失效分析及工艺改进[D]. 天津大学, 2014.

    Liu Chuanjun. Failure analysis and process optimization of CMOS image sensor[D]. Tianjin: Tianjin University, 2014. (in Chinese)
    [24] 杨吉平, 张建民. CMOS摄像机的原理与应用[J]. 天津职业技术师范大学学报, 2008, 18(3): 36-39. doi:  10.3969/j.issn.2095-0926.2008.03.010

    Yang Jiping, Zhang Jianmin. Principle of CMOS camera and its application [J]. Journal of Tianjin University of Technology and Education, 2008, 18(3): 36-39. (in Chinese) doi:  10.3969/j.issn.2095-0926.2008.03.010
    [25] 杨晓亮. CMOS图像传感器像素辐射特性的仿真研究[D]. 哈尔滨工程大学, 2014.

    Yang Xiaoliang. Simulation analysis of radiation characteristic of CMOS image sensor pixel [D]. Harbin: Harbin Engineering University, 2014. (in Chinese)
    [26] 程勇, 朱孟真, 马云峰, 等. 激光复合损伤机理与效应研究[J]. 红外与激光工程, 2016, 45(11): 28-34. doi:  10.3788/IRLA201645.1105005

    Cheng Yong, Zhu Mengzhen, Ma Yunfeng, et al. Mechanism and effects of complex laser ablation [J]. Infrared and Laser Engineering, 2016, 45(11): 1105005. (in Chinese) doi:  10.3788/IRLA201645.1105005
  • [1] 白杨, 张成, 王博宇, 李石川, 马榜.  机载末端红外对抗作战效能仿真研究 . 红外与激光工程, 2022, 51(11): 20220105-1-20220105-10. doi: 10.3788/IRLA20220105
    [2] 暴丽霞, 李江存, 贾启才.  炭基/锌掺杂铁磁体复合材料制备及其消光性能研究 . 红外与激光工程, 2022, 51(4): 20210378-1-20210378-8. doi: 10.3788/IRLA20210378
    [3] 曹海源, 黎伟, 陆益敏, 初华, 米朝伟.  CCD双站被动定位效能评估 . 红外与激光工程, 2022, 51(3): 20210148-1-20210148-7. doi: 10.3788/IRLA20210148
    [4] 徐沛拓, 陶雨婷, 刘志鹏, 刘群, 崔晓宇, 周雨迪, 刘崇, 刘东.  海洋激光雷达实验与仿真结果的对比 . 红外与激光工程, 2020, 49(2): 0203007-0203007. doi: 10.3788/IRLA202049.0203007
    [5] 暴丽霞, 乔小晶, 杨铭.  一锅水热法制备炭-铁磁体复合材料及红外消光性能研究(特约) . 红外与激光工程, 2020, 49(7): 20201020-1-20201020-6. doi: 10.3788/IRLA20201020
    [6] 潘功配, 杜雪峰, 赵军.  水基泡沫消光特性实验研究(特约) . 红外与激光工程, 2020, 49(7): 20201023-1-20201023-8. doi: 10.3788/IRLA20201023
    [7] 张健, 于永吉, 姜承尧, 王子健, 王彬, 陈薪羽, 金光勇.  高重频Nd:YVO4声光调Q与RTP电光调Q激光器实验对比分析 . 红外与激光工程, 2017, 46(2): 205002-0205002(5). doi: 10.3788/IRLA201746.0205002
    [8] 李韬锐, 童中翔, 黄鹤松, 王超哲, 李慎波.  空战对抗中面源红外诱饵干扰效能仿真 . 红外与激光工程, 2017, 46(9): 904002-0904002(8). doi: 10.3788/IRLA201746.0904002
    [9] 王磊, 聂劲松, 叶庆, 胡瑜泽.  0.53 μm全固态激光器热效应及其补偿技术研究 . 红外与激光工程, 2017, 46(4): 406003-0406003(7). doi: 10.3788/IRLA201746.0406003
    [10] 曾钦勇, 万勇, 秦开宇.  可应用于高效光电对抗的新颖结构激光谐振腔 . 红外与激光工程, 2017, 46(8): 806002-0806002(4). doi: 10.3788/IRLA201746.0806002
    [11] 程勇, 朱孟真, 马云峰, 魏靖松, 刘旭, 丁方正, 谭朝勇, 陈霞, 郭延龙, 初华.  激光复合损伤机理与效应研究 . 红外与激光工程, 2016, 45(11): 1105005-1105005(7). doi: 10.3788/IRLA201645.1105005
    [12] 李建勋, 童中翔, 樊晓光, 吴利荣, 陈超, 王超哲, 贾林通.  红外对抗过程的效能评估方法研究 . 红外与激光工程, 2016, 45(3): 304008-0304008(10). doi: 10.3788/IRLA201645.0304008
    [13] 王玺, 方晓东.  KrF激光和脉冲CO2激光损伤K9玻璃的实验对比与分析 . 红外与激光工程, 2016, 45(12): 1206009-1206009(5). doi: 10.3788/IRLA201645.1206009
    [14] 杜雪峰, 潘功配, 曲家惠, 赵新颖, 张旗.  雾化幕障宽波段消光性能研究 . 红外与激光工程, 2015, 44(2): 445-448.
    [15] 代福, 熊胜明.  高重复频率DPL 激光对光学薄膜元件损伤实验研究 . 红外与激光工程, 2014, 43(7): 2074-2080.
    [16] 杨利红, 王涛, 韩锦涛, 苏俊宏.  脉冲激光诱导TiO2/SiO2薄膜表面损伤性能实验 . 红外与激光工程, 2014, 43(2): 365-368.
    [17] 王玺, 卞进田, 李华, 聂劲松, 孙晓泉, 尹学忠, 雷鹏.  重频脉冲CO2激光损伤K9玻璃的实验 . 红外与激光工程, 2013, 42(5): 1204-1207.
    [18] 张文攀, 吴军辉, 胡欣, 梁巍巍, 殷瑞光, 刘艳芳, 汪亚.  基于激光导引头对抗数据的光电对抗效果实验方法 . 红外与激光工程, 2013, 42(3): 637-642.
    [19] 张文攀, 刘艳芳, 殷瑞光, 赵宏鹏, 汪亚.  对激光精确制导武器干扰效果仿真评估标准初探 . 红外与激光工程, 2013, 42(4): 900-903.
    [20] 陈兆兵, 曹立华, 王兵, 庄昕宇, 陈宁, 郭如海.  中波红外激光器远距离干扰红外探测器的外场实验研究 . 红外与激光工程, 2013, 42(7): 1700-1705,1753.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  127
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 修回日期:  2021-09-22
  • 刊出日期:  2022-08-05

复合激光损伤CMOS图像传感器实验研究

doi: 10.3788/IRLA20210537
    作者简介:

    朱孟真,男,讲师,硕士,主要从事固态激光器及激光毁伤对抗技术方面的研究

基金项目:  国防预研基金(30102050101);国防科研重点项目(KYWHJWJK1702)
  • 中图分类号: TN248.1

摘要: 激光是对抗光电侦察的有效方式。为了提高损伤效能,探索了复合激光损伤光电探测器的新思路。分别开展了波长1064 nm和532 nm、脉宽10 ns的激光及其双波长复合激光,以及波长1064 nm、脉宽0.4 ms和10 ns激光及其双脉宽复合激光对CMOS图像传感器的损伤效能实验。结果表明,双波长复合激光对CMOS造成严重损伤时的基频光能量是单独1064 nm激光的77.8%,是单独532 nm激光的62.5%;双脉宽复合激光损伤时,脉宽0.4 ms激光的能量密度降低为单独作用时的1.7%,脉宽10 ns激光的能量密度降低为单独作用时的76.4%。这一发现为多制式复合激光高效光电对抗提供了新的思路和参考。

English Abstract

    • CCD和CMOS是图像传感器的典型代表,被广泛应用于军事侦察成像、精确制导及激光雷达等领域[1]。激光是对抗光电侦察探测的有效方式,开展激光对图像传感器的损伤效能研究,对提高光电对抗能力具有重要意义[2-3]。目前,学者对激光损伤CCD和硅材料的研究较多,分别有连续激光、脉冲激光以及不同脉宽、能量密度、作用时间等对CCD或硅材料损伤效应及机理的研究[4-12]。近年来,已有学者开展激光辐照CMOS图像传感器的干扰效应[13-14]、损伤效应[15-16]以及对CCD、CMOS辐照的对比性研究[17-20],并开展了宽谱光源干扰效应[21-22]等方面的研究,但是尚无利用复合激光对CMOS图像传感器进行损伤的研究。

      为了提高损伤效能,文中提出采用复合激光损伤CMOS的新思路,分别开展了双波长、双脉宽的复合激光对CMOS进行功能失效损伤的实验研究,发现复合激光能够有效提高损伤效能,降低损伤能量密度阈值,为多制式复合激光高效光电对抗提供了新的思路。

    • 实验装置主要包括激光器、CMOS、能量计、显示器、小孔光阑、分光镜、合束镜、倍频晶体等。激光器包括三种制式,分别为:(1)波长1064 nm的10 ns激光器,能量7~60 mJ可调、重频1~20 Hz、光斑直径2.6 mm;(2)波长1064 nm的0.4 ms激光器,能量460 mJ~1.76 J可调、重频1~5 Hz、光斑直径5 mm;(3)波长532 nm的10 ns激光器,通过1064 nm的10 ns激光倍频得到,倍频晶体为10 mm×10 mm×8 mm的KTP。

      CMOS型号为SC1145,光敏面4.12 mm×3.1 mm、100万像素、像素单元尺寸为3 μm×3 μm。由像素阵列、驱动电路、时钟电路、译码控制器、A/D转换器、总线控制等几部分组成[23]。像素阵列由像素单元及晶体管组成,是图像传感器的主体部分,也是容易受激光损伤部分。像素单元包括微透镜、彩色滤光片、金属铝、二氧化硅及掺杂硅等[24],如图1所示。

      图  1  CMOS基本结构示意图

      Figure 1.  Structure diagram of CMOS

    • 实验分两步进行:(1)波长1064 nm和532 nm的脉宽10 ns激光以及波长1064 nm的脉宽0.4 ms激光分别对CMOS进行损伤;(2)脉宽10 ns、波长1064 nm和532 nm双波长复合激光,以及波长1064 nm的0.4 ms和10 ns双脉宽复合激光对CMOS损伤。实验均以单个脉冲辐照的方式进行,调节泵浦电流控制输出激光能量,观察在不同能量作用下CMOS损伤情况。以CMOS损伤占全屏2/3以上的面积为致盲损伤阈值判断标准。

      脉宽10 ns、波长1064 nm和532 nm双波长复合激光损伤实验方案如图2所示。将波长1064 nm、脉宽10 ns的激光腔外倍频,产生1064 nm和532 nm的复合激光。直径0.8 mm的小孔光阑置于CMOS前1 cm处,作用在CMOS上的光斑面积等于小孔光阑透光面积。通过1064 nm/532 nm双色分光镜,分别测量通过小孔后不同波长的激光能量。

      图  2  双波长复合激光损伤实验方案示意图

      Figure 2.  Schematic diagram of double wavelength composite laser damage experimental scheme

      波长1064 nm、脉宽0.4 ms和10 ns双脉宽的复合激光损伤实验方案如图3所示。将1064 nm、脉宽0.4 ms和10 ns激光偏振合束为一束激光,用信号发生器控制激光器的触发,使10 ns激光在0.4 ms激光的脉宽时间中点发射,通过直径为0.8 mm的小孔光阑后作用在CMOS上。实验中保持光阑后脉宽0.4 ms激光能量31 mJ恒定不变,改变脉宽10 ns激光能量,并测量能量大小。

      图  3  双脉宽复合激光损伤实验方案示意图

      Figure 3.  Schematic diagram of double pulse width composite laser damage experimental scheme

    • 波长1064 nm、脉宽10 ns激光作用时,随着能量的增大,CMOS依次出现白色光斑损伤、线损伤、十字交叉线面损伤,如图4(a)~(c)所示。开始出现白色光斑损伤时,作用在CMOS上的激光能量为1.48 mJ,能量密度为294.6 mJ/cm2。当能量增大至1.91 mJ、能量密度为380.2 mJ/cm2时,出现十字交叉线面损伤,此时,屏左侧(全屏2/3以上面积)严重损伤。

      图  4  CMOS在10 ns激光能量不断增加时的损伤效果图。(a)~(c) 波长1064 nm激光对CMOS损伤变化效果图;(d)~(f) 波长532 nm激光对CMOS损伤变化效果图

      Figure 4.  Damage effect picture of the CMOS under increasing 10 ns laser energy. (a)-(c) Damage effect of 1064 nm laser on CMOS; (d)-(f) Damage effect of 532 nm laser on CMOS

      波长532 nm激光、脉宽10 ns激光作用时,随着能量的增大,CMOS依次出现绿色光斑损伤、线损伤、十字交叉线面损伤,如图4(d)~(f)所示。开始出现绿色光斑损伤时,作用在CMOS上的激光能量为0.32 mJ,能量密度为63.7 mJ/cm2。当能量增大至0.8 mJ、能量密度为159.7 mJ/cm2时,出现十字交叉线面损伤,此时屏左侧(全屏2/3以上面积)严重损伤。

      图4可知,随着激光能量增加,CMOS依次出现光斑损伤、线损伤、十字交叉线面损伤。通过CMOS失效机理分析[18,23]、结合损伤CCD仿真模拟[10-11],可知:CMOS出现光斑损伤主要是由于微透镜和滤光片受损,伴随着部分金属铝剥落融化,部分单元像素失效造成的;出现线损伤主要是由于局部电路短路或断路导致信号传输中断;随着CMOS温度继续升高,晶体硅融化,二氧化硅由于受到热应力作用发生变形和断裂,金属线路严重损坏,出现十字交叉线面损伤,CMOS大面积失效。

      对比图4中两组损伤图像可以发现,波长532 nm激光造成的损伤状态中出现了绿色光斑损伤。由于532 nm激光辐射到彩色滤光片,致使滤光片发生光化学反应从而改变颜色,并造成滤光片受损区域无法成像[8]

    • 波长1064 nm、脉宽0.4 ms激光辐照CMOS,当光阑后能量为70.4 mJ,能量密度达14 J/cm2时也无法对其完成有效损坏,此时已经达到激光器最大输出能量。故采用对探测器加装焦距8 mm成像镜头的方式开展实验,镜头前置直径1.78 mm的小孔光阑。在逐渐增加能量的过程中,未出现点损伤的情况,当能量为96 mJ,能量密度为3.84×103 mJ/cm2时,CMOS几乎完全损伤,如图5(a)所示。

      图  5  带镜头的CMOS在1064 nm激光能量增加时的损伤效果图。(a) 0.4 ms激光对CMOS损伤效果图;(b)~(e) 10 ns激光对CMOS损伤效果图

      Figure 5.  Damage effect picture of the CMOS with lens under increasing 1064 nm laser energy. (a) Damage effect of 0.4 ms laser on CMOS; (b)-(e) Damage effect of 10 ns laser on CMOS

      波长1064 nm、脉宽10 ns激光作用于镜头时,随着激光能量的增加,CMOS依次出现点损伤、线损伤、面损伤,CMOS损伤状态如图5(b)~(d)所示。图5(e)是通过显示器显示的对应于图5(d)的图像。CMOS开始出现点损伤时,光阑后激光能量为0.065 mJ;当激光能量增大到0.1 mJ时,CMOS出现致盲损伤,此时的能量密度为4 mJ/cm2

      实验得到脉宽0.4 ms和10 ns激光分别对CMOS实现致盲损伤时的能量,并结合光斑面积和脉宽,计算可得致盲时的峰值功率密度和能量密度如表1所示。由表可知,脉宽0.4 ms激光致盲CMOS的能量密度是脉宽10 ns激光的960倍,峰值功率密度是脉宽10 ns激光的1/42。这是因为ns激光的峰值功率密度更高,在短时间内使温度快速上升,造成CMOS致盲损伤。

      表 1  不同脉宽的激光对带镜头的CMOS的损伤阈值

      Table 1.  Damage threshold of CMOS with lens by different pulse width laser

      Pulse widthLaser pulse power
      density/W·cm−2
      Laser pulse energy
      density/mJ·cm−2
      0.4 ms9.6×1033.84×103
      10 ns4×1054

      对比波长1064 nm、脉宽10 ns激光对加装镜头前后CMOS的致盲损伤能量密度阈值分别为380.2 mJ/cm2和4 mJ/cm2,设镜头的光学增益是恒定的,脉宽0.4 ms激光对带镜头的CMOS的致盲损伤能量密度阈值为3.84×103 mJ/cm2,计算可得脉宽0.4 ms激光对不带镜头的CMOS的致盲损伤能量密度阈值为3.65×105 mJ/cm2

    • 增大双波长复合激光输出能量,CMOS依次出现绿色光斑损伤、交叉线损伤、完全损伤,如图6(a)~(c)所示。探测器开始出现绿色光斑损伤时,光阑后复合激光能量为0.57 mJ,其中1064 nm激光能量为0.43 mJ,532 nm激光能量为0.14 mJ。复合激光能量增大至1 mJ时,出现交叉线和绿色光斑损伤。能量增大至1.19 mJ时完全损伤,其中1064 nm激光能量为0.64 mJ,532 nm激光能量为0.55 mJ,此时激光器通过倍频晶体之前的原始输出能量为35 mJ。

      图  6  双波长复合激光对CMOS损伤图像。(a)绿色光斑损伤;(b)交叉线损伤;(c)完全损伤

      Figure 6.  Damage effect picture of double wavelength composite laser on CMOS. (a) Green spot damage; (b) Cross line damage; (c) Complete damage

      波长1064 nm和532 nm的10 ns激光单独作用以及双波长复合激光作用于CMOS的致盲损伤数据如表2所示。对比可知:

      表 2  双波长复合激光和单波长激光损伤阈值对比

      Table 2.  Comparison of damage threshold between double wavelength composite laser and single wavelength laser

      Wavelength/nmOutput laser energy/mJComplete damage
      Laser energy/mJLaser pulse power
      density/W·cm-2
      Laser pulse energy
      density/mJ·cm-2
      1064451.913.8×107380.2
      532560.801.6×107159.7
      1064+532351.192.4×107236.9

      (1)单波长激光完全损伤CMOS时,532 nm激光能量密度阈值是1064 nm激光的42%,且损伤效能高。这是因为相对于1064 nm激光,532 nm激光波长较短,光子能量较大,且吸收系数较大,吸收深度小,更容易造成CMOS的损伤[6]

      (2)双波长复合激光致盲损伤CMOS的能量密度阈值是单独1064 nm激光的62.3%,是单独532 nm激光的148%,但是对比损伤效果图可以发现,复合激光的损伤力度更强。1064 nm激光具有更强的穿透能力,可以实现更严重的热损伤和力学损伤,532 nm激光具有更大的光子能量,且处于CMOS的主响应波段内,具有更高响应能力[25]。双波长激光融合了1064 nm和532 nm激光的高能量、长吸收深度、高吸收系数等特性,具有更强的损伤效能,能够对像素单元及线路造成更严重的损伤。

      (3)对比三种模式激光对CMOS造成致盲损伤时的基频光激光能量,双波长复合激光的基频光能量为35 mJ,是三种模式中最低的,反而单独532 nm激光的基频光能量为56 mJ,是三种模式中最高的。双波长复合激光致盲损伤CMOS的基频光能量是单独1064 nm的77.8%,是单独532 nm激光的62.5%。

    • 波长1064 nm、脉宽0.4 ms和10 ns的激光复合输出,保持光阑后脉宽0.4 ms激光能量31 mJ恒定不变,随着脉宽10 ns激光能量的增大,CMOS依次出现白点损伤、交叉线损伤、完全损伤现象,如图7(a)~(c)所示。当光阑后脉宽10 ns激光能量为1.03 mJ时,CMOS开始出现白点损伤,当激光能量上升到1.46 mJ时,CMOS致盲损伤。

      图  7  双脉宽复合激光对CMOS损伤图像。(a)白点损伤;(b)交叉线损伤;(c)完全损伤

      Figure 7.  Damage effect picture of double pulse width composite laser on CMOS. (a) White spot damage; (b) Cross line damage; (c) Complete damage

      波长1064 nm、脉宽0.4 ms和10 ns激光单独作用以及双脉宽复合激光作用于CMOS的损伤数据如表3所示。对比可知:

      (1)脉宽10 ns激光的加入,使复合激光中脉宽0.4 ms激光的致盲损伤阈值降低为6.17×103 mJ/cm2,是单独作用时的1.7%。

      (2)脉宽0.4 ms激光的加入,使复合激光中脉宽10 ns激光的致盲损伤阈值降低为290.6 mJ/cm2,是单独作用时的76.4%,且从损伤图像上可看出,CMOS的损伤面积加大,破坏力度更强。

      表 3  双脉宽复合激光和单脉宽激光损伤阈值对比

      Table 3.  Comparison of damage threshold between double pulse width composite laser and single pulse width laser

      Pulse widthSpot damageComplete damage
      Laser energy/mJLaser energy/mJLaser pulse power density/W·cm−2Laser pulse energy density/mJ·cm−2
      10 ns1.481.913.8×107380.2
      0.4 ms--9.1×1053.65×105
      10 ns+0.4 ms1.03+311.46+312.9×107+1.5×104 (10 ns laser action time)

      1.5×104 (other time)
      290.6+6.17×103

      波长1064 nm、脉宽0.4 ms和10 ns激光复合作用过程分为三个阶段:第一阶段,在脉宽0.4 ms激光的作用下,CMOS表面温度升高,表面变软,屈服强度大大降低,同时吸收系数增大;第二阶段,在脉宽0.4 ms激光作用的中间时刻加入的脉宽10 ns激光具有高峰值功率特性,辐照后能够快速提高材料表面温度,产生热学和力学损伤,在第一阶段激光作用的基础上对CMOS造成初步局部损伤,同时产生的表面损伤会增加表面粗糙度,提高后续激光的吸收率;第三阶段,脉宽0.4 ms激光携带的大能量在前两个阶段造成的初步损伤和高吸收率基础上,迅速扩大和加深CMOS的损伤程度,造成致盲损伤。

    • 文中开展了波长1064 nm、532 nm以及脉宽0.4 ms、10 ns激光及其复合激光对CMOS图像传感器损伤效能的实验,对比了单波长与双波长复合激光、单脉宽与双脉宽复合激光的损伤阈值和损伤效能。

      研究发现,双波长复合激光只是在腔外增加倍频晶体即可获得,其辐照CMOS造成致盲损伤时的基频光能量是单独1064 nm激光的77.8%,是单独532 nm激光的62.5%,且损伤效能更好。在干扰、致盲损伤敌方光电探测器时,利用双波长复合激光可以获得更佳的对抗效果,并且在未知敌方光电探测器响应波段和保护窗口的情况下还可以对不同工作模式的光电探测器实施对抗,提高对抗效能。双脉宽复合激光损伤时,脉宽0.4 ms激光的能量密度降低为单独0.4 ms激光损伤时的1.7%,脉宽10 ns激光的能量密度降低为单独10 ns激光时的76.4%。双脉宽复合激光融合了ns激光高峰值功率的热学损伤、力学损伤以及ms激光大能量的热学损伤,相互加强激光的作用效果,使CMOS损伤面积加大,破坏程度加深,提高损伤效能。在光电对抗中,ms激光可以获得大的能量输出,不但可以与ns激光复合对光电探测器进行软杀伤,还可以与连续激光复合对目标进行硬毁伤[26],实现多功能打击。这一发现为多制式复合激光高效光电对抗提供了新的思路和参考。

参考文献 (26)

目录

    /

    返回文章
    返回