留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受激布里渊散射相位共轭镜在高功率纳秒激光器中的应用进展

王天齐 康治军 孟冬冬 邱基斯 刘昊

王天齐, 康治军, 孟冬冬, 邱基斯, 刘昊. 受激布里渊散射相位共轭镜在高功率纳秒激光器中的应用进展[J]. 红外与激光工程, 2021, 50(5): 20211024. doi: 10.3788/IRLA20211024
引用本文: 王天齐, 康治军, 孟冬冬, 邱基斯, 刘昊. 受激布里渊散射相位共轭镜在高功率纳秒激光器中的应用进展[J]. 红外与激光工程, 2021, 50(5): 20211024. doi: 10.3788/IRLA20211024
Wang Tianqi, Kang Zhijun, Meng Dongdong, Qiu Jisi, Liu Hao. Application progress of the stimulated Brillouin scattering phase conjugate mirror in high power nanosecond lasers[J]. Infrared and Laser Engineering, 2021, 50(5): 20211024. doi: 10.3788/IRLA20211024
Citation: Wang Tianqi, Kang Zhijun, Meng Dongdong, Qiu Jisi, Liu Hao. Application progress of the stimulated Brillouin scattering phase conjugate mirror in high power nanosecond lasers[J]. Infrared and Laser Engineering, 2021, 50(5): 20211024. doi: 10.3788/IRLA20211024

受激布里渊散射相位共轭镜在高功率纳秒激光器中的应用进展

doi: 10.3788/IRLA20211024
基金项目: 中国科学院条件保障与财务局短脉冲激光技术团队(GJJSTD20200009)
详细信息
    作者简介:

    王天齐,男,助理研究员,硕士,主要从事固体激光器技术及非线性光学方面的研究。

    通讯作者: 康治军,男,高级工程师,博士,长期从事高功率短脉冲激光与相位共轭光束质量控制技术研究以及空间碎片探测、光电对抗等应用研究。
  • 中图分类号: TN248.1

Application progress of the stimulated Brillouin scattering phase conjugate mirror in high power nanosecond lasers

  • 摘要: 受激布里渊散射(Stimulated Brillouin Scattering, SBS)是一种光学三阶非线性效应,其反射光具有相位共轭特性,在振幅、相位、偏振方面与入射光呈现时间反演关系,并保持与入射光相同的波前。在主振荡功率放大(Master Oscillator Power-Amplifier, MOPA)结构的纳秒激光器中,激光放大器中的热效应及光路中大量的光学元件使传输光束存在严重的波前畸变,在恶化光束质量的同时也限制了功率进一步提升的可能性。在此类激光器中使用基于受激布里渊散射的相位共轭镜(Stimulated Brillouin Scattering Phase Conjugate Mirror, SBS-PCM),使光束往返通过引入严重波前畸变的激光放大器能够实时补偿畸变,从而优化激光器的输出光束质量,并有利于功率的进一步提升,进而促进纳秒激光器向着兼顾高功率和高光束质量的方向发展,因此在高功率纳秒激光器中得到广泛应用。文中首先从理论方面简要介绍了SBS-PCM的基本原理及其相位共轭特性,其次对比了不同SBS-PCM介质的特点及适用范围,概述了国内外机构对SBS-PCM的研究进展及高功率纳秒激光器中SBS-PCM的典型应用情况及发展历程,并最终对SBS-PCM发展趋势进行了展望。
  • 图  1  光束往返通过不规则表面晶体过程中的波前变化。(a)被平面反射镜反射;(b)被SBS-PCM反射

    Figure  1.  Evolution of the wavefront as the beam pass a round trip through crystal with an irregular surface. (a) Reflected by plane mirror; (b) Reflected by SBS-PCM

    图  2  Zel’dovich等人[14]采用的带有SBS-PCM的MOPA光路示意图

    Figure  2.  Optical layout of MOPA system with SBS-PCM adopted by Zel’dovich et al[14]

    图  3  Pierre等人[38]研制的690 W激光器光路示意图

    Figure  3.  Optical layout of 690 W laser system developed by Pierre et al[38]

    图  4  Pierre等人[39]研制的940 W激光器光路示意图

    Figure  4.  Optical layout of 940 W laser system developed by Pierre et al[39]

    图  5  Kiriyama等人[41]研制的362 W激光器光路示意图

    Figure  5.  Optical layout of 362 W laser system developed by Kiriyama et al[41]

    图  6  Yoshida等人[43]研制的766 W激光器光路示意图

    Figure  6.  Optical layout of 766 W laser system developed by Yoshida et al[43]

    图  7  Eichler等人[30]研制的带有光纤SBS-PCM的MOPA系统光路示意图

    Figure  7.  MOPA system with fiber SBS-PCM developed by Eichler et al[30]

    图  8  王雨雷等人[46]研制的百焦耳级激光器光路示意图

    Figure  8.  Optical layout of 100 J level laser system developed by Wang et al[46]

    图  9  赵智刚等人[36]的实验装置原理图

    Figure  9.  Schematic diagram of the experimental setup adopted by Zhao et al[36]

    图  10  樊仲维等人[3]研制的1 kW激光器光路示意图

    Figure  10.  Optical layout of 1 kW laser system developed by Fan et al[3]

    图  11  康治军等人[47]研制的550 W激光器光路示意图

    Figure  11.  Optical layout of 550 W laser system developed by Kang et al[47]

    表  1  SBS-PCM在高功率纳秒激光器中的应用情况

    Table  1.   Applications of SBS-PCM in high power nanosecond lasers

    InstituteYearProperties of laser systemProperties of SBS-PCMRef.
    Output
    power/W
    Output
    energy/J
    Repetition
    rate/Hz
    Pulse
    duration/ns
    Beam
    quality
    MediumInput
    power/W
    Input
    energy/J
    Reflectivity
    America TRW199310010071.1 DLFreon 11330.585%[27]
    19976902.5 k201.1 DL200>90%[38]
    19989401007.52 DLLiquid10098%[39]
    America LLNL199515025-306141.25 DLCCl4152.588%[40]
    Japan Osaka University20033621 k291.2 DLFC-759075%[41]
    200436850501.5 DLFC-75 & FC-724398%[42]
    2012766100FC-75 & FC-72[43]
    Germany Technische Universität Berlin199710410090Fiber50%[44]
    20013152 kM2=2.6Fiber[30]
    Australia EOS201780017020M2~3FC-77015395.2%[45]
    China HIT2008106.620 min per shot20CCl4>30~60%[46]
    China ZJU2011421 k1.5M2~2.3Fiber50%[36]
    China AOE20171 k2006.61.7 DLFC-770220 W98%[3]
    201855050010M2~2FC-770150 W92%[47]
    下载: 导出CSV
  • [1] Sun Mingguo, Gao Pengqi, Li Zhenwei, et al. Analysis on the experiment of satellite laser ranging of defunct Tiangong-1 spacecraft [J]. Chinese Science Bulletin, 2017, 62(24): 2796-2803. (in Chinese)
    [2] Uwe M, Oliver R, Christian L, et al. Airborne direct-detection and coherent wind lidar measurements over the North Atlantic in 2015 supporting ESA's aeolus mission[C]//Proceedings of the Epj Web of Conferences, F, 2018.
    [3] Fan Z W, Qiu J S, Kang Z J, et al. High beam quality 5 J, 200 Hz Nd: YAG laser system [J]. Light: Science & Applications, 2017, 6(3): e17004.
    [4] Scharring S, Eisert L, Lorbeer R A, et al. Momentum predictability and heat accumulation in laser-based space debris removal [J]. Optical Engineering, 2018, 58(1): 011004.1.
    [5] Endo A, Phipps C R. High-power laser plasma EUV light source for lithography[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2004, 5448: 704-711.
    [6] Hatae T, Naito O, Nakatsuka M, et al. Applications of phase conjugate mirror to Thomson scattering diagnostics (invited) [J]. Review of Sentific Instruments, 2006, 77(10): 191-210.
    [7] Mao Jianshan, Zhao Junyu, Li Yadong, et al. HT-7 multipoint Nd laser Thomson scattering apparatus [J]. Plasma Science & Technology, 2001, 3(2): 691-702.
    [8] Xie J, Kar A, Rothenflue J A, et al. Comparative studies of metal cutting with high power lasers[C]//Proceedings of the XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, F, 1997.
    [9] Mahdieh M H, Nikbakht M, Moghadam Z E, et al. Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd: YAG laser in ambient air and water [J]. Applied Surface Science, 2010, 256(6): 1778-1783. doi:  10.1016/j.apsusc.2009.10.003
    [10] Wang J, Cheng T, Wang L, et al. Compensation of strong thermal lensing in an LD side-pumped high-power Er: YSGG laser [J]. Laser Physics Letters, 2015, 12(10): 105004. doi:  10.1088/1612-2011/12/10/105004
    [11] Tei K, Matsuoka F, Kato M, et al. Nd: YAG oscillator amplifier system with a passive ring self-pumped phase-conjugate mirror [J]. Opt Lett, 2000, 25(7): 481. doi:  10.1364/OL.25.000481
    [12] Geng H, Han Z J, Wang J, et al. Stabilization of a nonlinear rotating disk-beam system with localized thermal effect [J]. Nonlinear Dynamics, 2018, 93(2): 785-99. doi:  10.1007/s11071-018-4227-9
    [13] Wang H, Fan Z, Yu J, et al. Research progress of high repetition rate and high power laser with SBS-phase conjugate mirror [J]. Laser & Optoelectronics Progress, 2014, 51(4): 040001. (in Chinese)
    [14] Zel'dovich B Y, Popovichev V I, Ragul'skii V V, et al. Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtem-Brillouin scattering [J]. JETP Letters, 1972, 15(3): 109-122.
    [15] Wenbo D, Xiaolin W, Kai H, et al. Suppression of stimulated Brillouin scattering in high power narrow-linewidth fiber amplifier with phase-modulation [J]. Chinese Journal of Lasers, 2011, 38(11): 1105009. (in Chinese) doi:  10.3788/CJL201138.1105009
    [16] Ayral J L, Montel J, Huignard J-P. Master oscillator-amplifier Nd: YAG laser with a SBS phase-conjugate mirror[C]//Proceedings of SPIE-The International Society for Optical Engineering, 1991, 1500: 81-92.
    [17] Bai Z, Yuan H, Liu Z, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review [J]. Optical Materials, 2018, 75: 626-645. doi:  10.1016/j.optmat.2017.10.035
    [18] Zeldovich B I, Pilipetskii N F, Shkunov V V. Principles of Phase Conjugation[M]. Berlin: Springer, 1985.
    [19] Brillouin L. Diffusion de la lumière et des rayons X par un corps transparent homogène-Influence de l'agitation thermique [J]. Annales De Physique, 1922, 9(17): 88-122. doi:  10.1051/anphys/192209170088
    [20] Chiao R Y, Townes C H, Stoicheff B P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves [J]. Physical Review Letters, 1964, 12(21): 592-597. doi:  10.1103/PhysRevLett.12.592
    [21] Masters B R, Boyd R W. Nonlinear Optics[M]. 3rd ed. Amsterdam: Elsevier, 2009.
    [22] Wang V, Giuliano C R. Correction of phase aberrations via stimulated Brillouin scattering [J]. Opt Lett, 1978, 2(1): 4-6. doi:  10.1364/OL.2.000004
    [23] Gower M C. KrF laser-induced breakdown of gases [J]. Optics Communications, 1981, 36(1): 43-48. doi:  10.1016/0030-4018(81)90027-4
    [24] Hagenlocker E E, Minck R W, Rado W G. Effects of phonon lifetime on stimulated optical scattering in gases [J]. Physical Review, 1967, 154(2): 226-233. doi:  10.1103/PhysRev.154.226
    [25] Maier M, Rother W, Kaiser W. Time-resolved measurements of stimulated Brillouin scattering [J]. Applied Physics Letters, 1967, 10(3): 80-82. doi:  10.1063/1.1754860
    [26] Yoshida H, Kmetik V, Fujita H, et al. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror [J]. Appl Opt, 1997, 36(16): 3739-3744. doi:  10.1364/AO.36.003739
    [27] Pierre R J S, Injeyan H, Hilyard R C, et al. One joule per pulse, 100-W diode-pumped, near-diffraction-limited, phase-conjugated Nd: YAG master oscillator power amplifier[C]//Proceedings of SPIE-The International Society for Optical Engineering, 1993, 1865: 2-8.
    [28] Brewer R G, Rieckhoff K E. Stimulated Brillouin scattering in liquids [J]. Physical Review Letters, 1964, 13(11): 334-340. doi:  10.1103/PhysRevLett.13.334
    [29] Dubinskii M A, Merkle L D. Ultrahigh-gain bulk solid-state stimulated Brillouin scattering phase-conjugation material [J]. Opt Lett, 2004, 29(9): 992-996. doi:  10.1364/OL.29.000992
    [30] Riesbeck T, Risse E, Eichler H J. Pulsed solid-state laser system with fiber phase conjugation and 315 W average output power [J]. Applied Physics B, 2001, 73(8): 847-856. doi:  10.1007/s003400100745
    [31] Shin J S, Kong H J. Phase fluctuation of self-phase-controlled stimulated Brillouin scattering waves via K8 glass [J]. Optics Communications, 2012, 285(13-14): 2977-2986. doi:  10.1016/j.optcom.2012.02.055
    [32] Hon D T. Pulse compression by stimulated Brillouin scattering [J]. Opt Lett, 1980, 5(12): 516-524. doi:  10.1364/OL.5.000516
    [33] Hasi Wuliji,Li Xing,Guo Xiangyu, et al. Investigation on stimulated Brillouin scattering medium−perfluoropolyether at high and low temperatures [J]. Acta Physica Sinica, 2010, 59(12): 8554-8562. (in Chinese)
    [34] Hasiwuliji, Lu Zhiwei, He Weiming, et al. Influences of chemical construction of medium on stimulated Brillouin scattering [J]. Laser Techonology, 2004, 28(6): 580-584. (in Chinese) doi:  10.3969/j.issn.1001-3806.2004.06.009
    [35] 朱成禹, 吕志伟, 何伟明, 等. 固体SBS介质与SBS相位共轭镜的全固化[J]. 激光与光电子学进展, 2006, 43(3): 65-8.
    [36] Zhigang Z, Yantao D, Sunqiang P, et al. Investigation on characteristics of large aperture tapered fiber phase conjugation mirror for kHz high energy MOPA laser system [J]. Chinese Journal of Lasers, 2011, 38(4): 0402007. (in Chinese) doi:  10.3788/CJL201138.0402007
    [37] Eichler H J, Haase A, Liu B, et al. Design and construction of high-power solid state laser amplifiers with phase conjugating mirror[C]//Proceedings of SPIE - The International Society for Optical Engineering, 1996, 2889: 8-19.
    [38] Stpierre R J, Holleman G W. Active tracker laser (ATLAS) [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1): 64-70. doi:  10.1109/2944.585816
    [39] St Pierre R J, Mordaunt D W, Injeyan H, et al. Diode array pumped kilowatt laser [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1): 53-58. doi:  10.1109/2944.585814
    [40] Dane C B, Zapata L E. Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction [J]. IEEE Journal of Quantum Electronics, 1995, 31(1): 148-163. doi:  10.1109/3.341719
    [41] Kiriyama H, Yamakawa K, Nagai T, et al. 360-W average power operation with a single-stage diode-pumped Nd: YAG amplifier at a 1 kHz repetition rate [J]. Opt Lett, 2003, 28(18): 1671-1673. doi:  10.1364/OL.28.001671
    [42] Yoshida H, Nakatsuka M, Hatae T, et al. Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics [J]. Japanese Journal of Applied Physics, 2004, 43(8A): 1038-1040. doi:  10.1143/JJAP.43.L1038
    [43] Hatae T, Yatsuka E, Hayashi T, et al. Development of a YAG laser system for the edge Thomson scattering system in ITER [J]. Rev Sci Instrum, 2012, 83(10): 10E344. doi:  10.1063/1.4738658
    [44] Eichler H J, Haase A, Kunde J, et al. Fiber phase conjugator as reflecting mirror in an MOPA arrangement[C]//Proc SPIE, 1997, 2986: 46-54.
    [45] Gao Y, Wang Y, Chan A, et al. High average power diode pumped solid state laser [J]. Chinese Journal of Lasers, 2017, 14(3): 035803. (in Chinese) doi:  10.1088/1612-202X/aa5c20
    [46] 王雨雷, 吕志伟, 何伟明, 等. 百焦耳级受激布里渊散射相位共轭激光系统[J]. 中国激光, 2008, 35(S1): 90-94.
    [47] Kang Z, Fan Z, Huang Y, et al. High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM [J]. Optics Express, 2018, 26(6): 6560-6571. doi:  10.1364/OE.26.006560
    [48] Jackel S M, Moshe I, Lavi R, et al. Brillouin scatter and Faraday effect isolators/nonreciprocal rotators for high-fluence multiple-pass amplifiers[C]//Proceedings of SPIE the International Society for Optical Engineering, 1998, 3684: doi: 10.1117/12.334829.
    [49] Kmetik V, Yoshida H, Fujita H, et al. Very high energy SBS phase conjugation and pulse compression in fluorocarbon liquids[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2000, 3889: 818-826.
    [50] Injeyan H, Pierre R J S, Berg J G, et al. Diode array-pumped kilowatt laser development[C]//Proceedings of the Conference on Lasers & Electro-optics, F, 1994.
    [51] Hidetsugu, Yoshida, Masahiro, et al. YAG laser perfomance improved by stimulated Brillouin scattering phase conjugation mirror in Thomson scattering diagnostics at JT-60 [J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 2A): 439-442. doi:  10.1143/JJAP.42.439
    [52] Wang Y, Lv Z, Guo Q, et al. A new circulating two-cell structure for stimulated Brillouin scattering phase conjugation mirrors with 1-J load and 10-Hz repetition rate [J]. Chin Opt Lett, 2010, 8(11): 1064-1070. doi:  10.3788/COL20100811.1064
    [53] Kiriyama H, Yamakawa K, Kageyama N, et al. Design and operation of high-energy and high-average-power diode-pumped single Nd: YAG amplifier with stimulated-Brillouion-scattering phase conjugate mirror [J]. Japanese Journal of Applied Physics, 2005, 44(10): 7464-7471. doi:  10.1143/JJAP.44.7464
    [54] Tang X, Qiu J, Fan Z, et al. Experimental study on SBS-PCM at 200Hz repetition rate pumped with joule-level energy [J]. Optical Materials, 2017, 67: 64-69. doi:  10.1016/j.optmat.2017.03.044
    [55] Eichler H J, Mocofanescu A, Riesbeck T, et al. Stimulated Brillouin scattering in multimode fibers for optical phase conjugation [J]. Optics Communications, 2002, 208(4-6): 427-431. doi:  10.1016/S0030-4018(02)01637-1
    [56] Riesbeck T, Eichler H J, Risse E, et al. High-brightness solid state laser systems with fiber phase conjugate mirrors for micro material processing[C]//Proceedings of the High-power Lasers & Applications, F, 2003.
    [57] 周涛, 陈军, 唐淳, 等. LD抽运高重复频率四通放大MOPA系统中的光纤相位共轭研究[J]. 中国激光, 2004, 31(4): 441-444. doi:  10.3321/j.issn:0258-7025.2004.04.013
    [58] Liu L, Bi G J, Huang M Q, et al. High repeating rate and big energy single-longitudinal-mode laser [J]. Chinese J Lasers, 2003, 30(10): 885-889. (in Chinese)
    [59] Gao Q S, Tong L X, Chen X L, et al. High pulse repetition rate double-pass amplifier with the liquid phase conjugating mirror [J]. High Power Laser and Particle Beams, 2006, 18(9): 1465-1473. (in Chinese)
    [60] Hongli Wang, Seongwoo Cha, Hong Jin Kong , et al. Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation [J]. Optics Express, 2019, 27(7): 9895-9905. doi:  10.1364/OE.27.009895
    [61] Yoshida H, Ohkubo A, Fujita H, et al. Thermally induced effects of stimulated Brillouin scattering via phase-conjugation mirror for repetitive laser pulse [J]. Review of Laser Engineering, 2010, 29(2): 109-114.
  • [1] 宗梦雨, 张振, 刘晶晶, 刘杰, 苏良碧.  LD泵浦的1.3at.%Er3+: CaF2中红外高功率固体激光器(特邀) . 红外与激光工程, 2021, 50(8): 20210336-1-20210336-6. doi: 10.3788/IRLA20210336
    [2] 祖嘉琦, 武帅, 张海涛, 耿东晛, 卢姁.  光纤饱和吸收体掺镱全光纤化激光器 . 红外与激光工程, 2020, 49(6): 20190382-1-20190382-6. doi: 10.3788/IRLA20190382
    [3] 张昆, 周寿桓, 李尧, 张利明, 余洋, 张浩彬, 朱辰, 张大勇, 赵鸿.  142 W高峰值功率窄线宽线偏振脉冲光纤激光器 . 红外与激光工程, 2020, 49(4): 0405003-0405003-6. doi: 10.3788/IRLA202049.0405003
    [4] 许蒙蒙, 周煜, 孙建锋, 卢智勇, 劳陈哲, 贺红雨, 李跃新.  基于相位调制器的宽带窄线宽的线性调频激光源的产生 . 红外与激光工程, 2020, 49(2): 0205004-0205004. doi: 10.3788/IRLA202049.0205004
    [5] 郑天然, 王方, 孙喜博, 胡东霞.  基于光场分布特性分析的高功率激光吸收体设计方法研究 . 红外与激光工程, 2019, 48(10): 1005010-1005010(6). doi: 10.3788/IRLA201948.1005010
    [6] 陈子伦, 周旋风, 王泽锋, 许晓军.  高功率光纤激光器功率合束器的研究进展(特邀) . 红外与激光工程, 2018, 47(1): 103005-0103005(7). doi: 10.3788/IRLA201746.0103005
    [7] 张利明, 鄢楚平, 冯进军, 张昆, 张浩彬, 朱辰, 张大勇, 赵鸿, 陈念江, 李尧, 郝金坪, 王雄飞, 何晓彤, 周寿桓.  180 W单频全光纤激光器 . 红外与激光工程, 2018, 47(11): 1105001-1105001(9). doi: 10.3788/IRLA201847.1105001
    [8] 汪相如, 周庄奇.  液晶光学相控阵在高功率激光应用中的研究进展(特邀) . 红外与激光工程, 2018, 47(1): 103006-0103006(9). doi: 10.3788/IRLA201847.0103006
    [9] 张颖, 柯熙政, 陈明莎.  受激布里渊散射波前畸变校正仿真实验 . 红外与激光工程, 2018, 47(11): 1122001-1122001(7). doi: 10.3788/IRLA201847.1122001
    [10] 崔建丰, 高涛, 张亚男, 王迪, 姚俊, 岱钦.  高效率、高峰值功率351nm准连续紫外激光器 . 红外与激光工程, 2017, 46(6): 605004-0605004(4). doi: 10.3788/IRLA201746.0605004
    [11] 李永倩, 安琪, 李晓娟, 张立欣.  增益型受激布里渊相移谱宽范围功率特性 . 红外与激光工程, 2017, 46(1): 106001-0106001(6). doi: 10.3788/IRLA201746.0106001
    [12] 黄伟, 谭荣清, 李志永.  LD横向泵浦铷蒸气激光器阈值特性理论研究 . 红外与激光工程, 2016, 45(2): 206001-0206001(7). doi: 10.3788/IRLA201645.0206001
    [13] 刘旭, 魏靖松, 谭朝勇, 朱孟真, 程勇.  激光器免温控泵浦源的多波长选择理论 . 红外与激光工程, 2016, 45(5): 505004-0505004(5). doi: 10.3788/IRLA201645.0505004
    [14] 夏彦文, 郑奎兴, 达争尚, 李红光, 赵军普, 孙志红, 彭志涛, 王拯洲, 刘华, 梁樾, 李森, 郑小霞, 魏晓峰.  大口径高通量验证实验平台的激光参数精密诊断系统 . 红外与激光工程, 2016, 45(12): 1217008-1217008(8). doi: 10.3788/IRLA201645.1217008
    [15] 夏彦文, 郑奎兴, 刘华, 赵军普, 彭志涛, 孙志红, 董军, 李森.  纳秒整形激光脉冲波形的高对比度诊断 . 红外与激光工程, 2016, 45(11): 1106002-1106002(6). doi: 10.3788/IRLA201645.1106002
    [16] 陈欣, 唐顺兴, 郭亚晶, 井媛媛, 姜秀青, 朱宝强.  高功率激光参数测量中高倍率衰减方案 . 红外与激光工程, 2016, 45(S1): 48-54. doi: 10.3788/IRLA201645.S106002
    [17] 毛小洁, 秘国江, 庞庆生, 邹跃.  高光束质量弹载激光主动成像激光器研制 . 红外与激光工程, 2015, 44(8): 2239-2242.
    [18] 黄琳, 王淑梅.  基于瑞利散射和布里渊散射的自调Q双包层掺镱光纤激光器研究 . 红外与激光工程, 2015, 44(12): 3517-3524.
    [19] 徐正文, 曲轶, 王钰智, 高婷, 王鑫.  高功率980nm非对称宽波导半导体激光器设计 . 红外与激光工程, 2014, 43(4): 1094-1098.
    [20] 王国松.  受激布里渊散射位相共轭激光器自调Q机理研究 . 红外与激光工程, 2013, 42(6): 1437-1442.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  28
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 修回日期:  2021-01-25
  • 刊出日期:  2021-05-21

受激布里渊散射相位共轭镜在高功率纳秒激光器中的应用进展

doi: 10.3788/IRLA20211024
    作者简介:

    王天齐,男,助理研究员,硕士,主要从事固体激光器技术及非线性光学方面的研究。

    通讯作者: 康治军,男,高级工程师,博士,长期从事高功率短脉冲激光与相位共轭光束质量控制技术研究以及空间碎片探测、光电对抗等应用研究。
基金项目:  中国科学院条件保障与财务局短脉冲激光技术团队(GJJSTD20200009)
  • 中图分类号: TN248.1

摘要: 受激布里渊散射(Stimulated Brillouin Scattering, SBS)是一种光学三阶非线性效应,其反射光具有相位共轭特性,在振幅、相位、偏振方面与入射光呈现时间反演关系,并保持与入射光相同的波前。在主振荡功率放大(Master Oscillator Power-Amplifier, MOPA)结构的纳秒激光器中,激光放大器中的热效应及光路中大量的光学元件使传输光束存在严重的波前畸变,在恶化光束质量的同时也限制了功率进一步提升的可能性。在此类激光器中使用基于受激布里渊散射的相位共轭镜(Stimulated Brillouin Scattering Phase Conjugate Mirror, SBS-PCM),使光束往返通过引入严重波前畸变的激光放大器能够实时补偿畸变,从而优化激光器的输出光束质量,并有利于功率的进一步提升,进而促进纳秒激光器向着兼顾高功率和高光束质量的方向发展,因此在高功率纳秒激光器中得到广泛应用。文中首先从理论方面简要介绍了SBS-PCM的基本原理及其相位共轭特性,其次对比了不同SBS-PCM介质的特点及适用范围,概述了国内外机构对SBS-PCM的研究进展及高功率纳秒激光器中SBS-PCM的典型应用情况及发展历程,并最终对SBS-PCM发展趋势进行了展望。

English Abstract

    • 高功率纳秒激光器在多普勒激光测风雷达[1-2]、空间碎片探测[3-4]、X射线产生[5]、汤姆逊散射诊断[6-7]及材料激光加工[8-9]等领域有着广泛应用,这些应用要求激光器在提升输出功率的同时能够保持良好的光束质量。为达到提升输出功率的目的,激光器中需要使用多级放大器及高能泵浦源,然而高能泵浦源引入的热积累会在晶体中形成热透镜效应和热致双折射效应,使激光器中传输的光束中存在明显的波前畸变,进而严重影响激光的光束质量[10]。为解决这一问题,人们提出了使用激光二极管(Laser Diode, LD)泵浦源以降低产热量和使用薄片、板条晶体以加快散热速率的方法[11-12]。尽管采用了LD泵浦、改良晶体构型和高效热管理技术,在高功率激光器中仍存在着严重的热积累和明显的波前畸变[13]。特别是对纳秒激光器而言,由于短脉冲激光对泵浦能量的提取能力较弱,未提取的泵浦能量将转化为晶体中的热积累,导致输出光束质量无法接近衍射极限[10]

      SBS-PCM结构简单,具有相位共轭特性和能够改善光束质量的优点[14],已在工业、科研等领域得到广泛应用[15-17],是一种解决高功率纳秒激光器中光束质量恶化问题的有效手段[18]。在高功率脉冲激光注入条件下,SBS-PCM的使用受到光学击穿和热效应的影响,限制了其在更高功率纳秒激光器中的应用。文中简要介绍了SBS-PCM的基本原理,对国内外研究进展及其在纳秒激光器中的典型应用情况进行了举例,对比了不同SBS-PCM介质的特性,最终总结了SBS-PCM进一步的发展方向。

    • 布里渊散射(Brillouin Scattering)的概念源于20世纪20年代,L. Brillouin在研究液体中的光散射现象时发现除瑞利散射外,散射光中还有存在频移的成分[19]。这一理论在之后的研究工作中得到了验证,人们将这一发生在活性介质中的声波场对光波场的非弹性散射现象命名为布里渊散射。在当时还没有激光器这种高强度光源,布里渊散射现象十分微弱,因此人们没有十分关注这一现象。直至20世纪60年代,在激光器问世后,R. Y. Chiao等人[20]将激光注入晶体介质中并首次观测到受激布里渊散射现象,开启了人们对SBS进行详尽研究的篇章。

    • SBS是在活性介质中的抽运光波、声波与Stokes散射光波发生三波混频,并将抽运光波的能量向Stokes散射光波转移的过程[21]。当功率密度达到SBS阈值、频率为${\omega _{\rm{p}}}$的抽运光入射至活性介质中时,由于电致伸缩效应使介质中产生频率为$ {\omega _{\rm{s}}} $的弹性声波。该声波引起介质密度随时间和空间发生周期性变化,进而使介质折射率呈现时域和空间上的周期性分布。这种折射率的周期性分布可以看作一个运动的声波光栅,对抽运光形成散射,产生频率为${\omega _{\rm{p}}} - {\omega _{\rm{s}}}$的Stokes散射光。在上述过程中,每湮没一个抽运光子就在介质中产生一个声子和一个Stokes光子,因此Stokes散射光不断增强,实现抽运光能量向Stokes散射光的转移。

    • 相位共轭波是指在振幅、相位及偏振态三个方面互为时间反演的光波,在数学上可表示为将一个算符作用在光电场上,使其复振幅转变为其复共轭。

      当一束抽运光入射至SBS-PCM中时,在一维慢变近似及忽略损耗的条件下,有如下关系式[14]

      $$\frac{{\partial {E_{\rm{L}}}({{r}_ \bot },{\textit{z}})}}{{\partial {\textit{z}}}} - \dfrac{{i}}{{2{k_{\rm{L}}}}}{\nabla _ \bot }{E_{\rm{L}}}({{{r}}_ \bot },{\textit{z}}) = 0$$ (1)
      $$\frac{{\partial {E_{\rm{S}}}({{{r}}_ \bot },{\textit{z}})}}{{\partial {\textit{z}}}} + \frac{{i}}{{2{k_{\rm{S}}}}}{\nabla _ \bot }{E_{\rm{S}}}({{{r}}_ \bot },{\textit{z}}) + \frac{1}{2}g({{{r}}_ \bot },{\textit{z}}){E_{\rm{S}}}({{{r}}_ \bot },{\textit{z}}) = 0$$ (2)
      $${k_{\rm{S}}} \approx {k_{\rm{L}}}$$ (3)
      $${E_{\rm{S}}}({{{r}}_ \bot },{\textit{z}}) = \sum\limits_{n = 0}^\infty {{C_{n}}} ({\textit{z}}){f_{n}}({{{r}}_ \bot },{\textit{z}})$$ (4)
      $${E_{\rm{L}}}({{{r}}_ \bot },{\textit{z}}) = Bf_0^*({{{r}}_ \bot },{\textit{z}})$$ (5)
      $${E_{\rm{S}}}({{{r}}_ \bot },{\textit{z}}) \approx {C_0}({\textit{z}}){f_0}({{{r}}_ \bot },{\textit{z}}) = \frac{{{C_0}({\textit{z}})}}{{{B^*}}}E_{\rm{L}}^*({{{r}}_ \bot },{\textit{z}})$$ (6)

      式中:${E_{\rm{L}}}({{{r}}_ \bot },{\textit{z}})$${E_{\rm{S}}}({{{r}}_ \bot },{\textit{z}})$分别为抽运光场和Stokes散射光场;${k_{\rm{L}}}$${k_{\rm{S}}}$分别为抽运光场和Stokes散射光场的波矢;$g({{{r}}_ \bot },{\textit{z}})$为SBS增益;${f_{n}}({{{r}}_ \bot },{\textit{z}})$为一组正交归一化函数组;${C_{n}}({\textit{z}})$$B$分别为对${E_{\rm{S}}}({{{r}}_ \bot },{\textit{z}})$${E_{\rm{L}}}({{{r}}_ \bot },{\textit{z}})$进行展开时的系数。若该抽运光具有一定的波前畸变,在Stokes散射光的传播过程中,${C_0}({\textit{z}})$比其他${C_{n}}({\textit{z}})$的增速都大,因此传播一段距离后只剩下系数为${C_0}({\textit{z}})$的项。观察公式(6)能够发现Stokes散射光是抽运光的理想相位共轭光,该散射光具有与抽运光同样的波前。

    • 当一束光强达到SBS阈值且存在一定波前畸变的光束入射到SBS-PCM中时,将产生与抽运光波前具有相同畸变的声波,可等效为一变形的反射镜[22],该反射镜恰好使Stokes散射光的波前与入射光波前相同,形成入射光的相位共轭光。

      以一束有理想平面波前的光束往返经过一具有不规则表面的晶体为例,其波前变化过程如图1所示,图中数字为波前位置的时间顺序,红色实线为向右传播的光束波前,绿色虚线为反射后向左传播的光束波前。可以看出,图1(a)中1处的波前无畸变,晶体的不规则表面使2处波前存在畸变,经普通反射镜反射后在3处形成镜像的波前畸变,再次经过晶体后在4处产生更明显的波前畸变;而在图1(b)中,SBS-PCM中产生的畸变声波使反射后的光束在3处有与2处相同的波前畸变,经过晶体后波前被还原,得到4处的无畸变光束。

      图  1  光束往返通过不规则表面晶体过程中的波前变化。(a)被平面反射镜反射;(b)被SBS-PCM反射

      Figure 1.  Evolution of the wavefront as the beam pass a round trip through crystal with an irregular surface. (a) Reflected by plane mirror; (b) Reflected by SBS-PCM

      因此,在激光器的多个放大器之后使用SBS-PCM对光束进行反射使其再次通过放大器,不仅能够实现双程放大以充分提取放大器的储能,还能够有效补偿放大器对光束造成的波前畸变以提升光束质量。

    • 使用SBS-PCM对光束波前畸变进行实时补偿,能够有效解决纳秒激光器无法同时获得高的输出功率和良好的光束质量这一矛盾。因此美国、俄罗斯、法国、德国、日本、中国、澳大利亚和韩国等多个国家的研究机构陆续开展了大量对SBS-PCM的理论和实验研究工作。

    • SBS-PCM介质分为气体、液体和固体三类,其中气体介质主要有甲烷、稀有气体、N2和SF6[23-25];液体介质主要有苯、丙酮和FC重氟碳等[26-28];固体介质主要有熔融石英玻璃、LAP、DLAP晶体和光纤等[29-31]

      气体介质在常压下的SBS增益系数较低,因此通常需要加压至几十甚至几百个大气压来增加增益系数、提升能量反射率[32],但高压气体的击穿阈值较低且装置安全性差,因此只在早期得到使用并逐渐被液体和固体介质取代。

      液体介质具有SBS阈值低、声子寿命短、吸收系数小、SBS增益系数高和击穿阈值高等优点而得到广泛使用。苯和丙酮的液体介质有毒、挥发性强、易对环境造成污染,因此在近几年的研究和应用中已不再使用上述液体。FC系列全氟碳液体具有良好的化学稳定性[33],以FC-72和FC-75分子为例,其化学键四周被氟原子包围,氟原子的范德华半径为0.135 nm,能够严密包裹碳链,起到良好的保护作用[34];且全氟碳液体的光学吸收系数极低,通常为10−5 cm−1,吸收系数越低,对入射光能量的吸收越少,以上两点使以全氟碳液体为介质的SBS-PCM具有100~130 GW/cm2的击穿阈值[26],不易发生光学击穿现象,因此适用于高功率激光器。

      熔融石英玻璃、K8玻璃和LAP等晶体介质有不污染环境和利于激光器全固化的优点,且SBS增益系数高,因此在大能量纳秒激光器中得到了较多应用。但这些晶体的击穿阈值较低,以LAP晶体为例,其击穿阈值约为20 GW/cm2(@18 ns)且发生击穿后易造成永久损伤,因此应用十分受限[35]。在众多固体介质中,光纤介质能够实现较长的相互作用距离并有效减小入射光束截面积,因此适用于千赫兹级重复频率的高平均功率、低峰值功率激光器中[30]。但现有研究中的光纤SBS-PCM能量反射率明显低于液体介质,对激光器整体输出功率有一定的限制,且光纤端面的损伤阈值较低[36],通常为2 GW/cm2左右[37],不利于在大能量、短脉宽激光器中的应用。

    • 最早使用SBS-PCM进行光束质量优化的是俄罗斯Lebedev物理研究所的Zel’dovich和Popovichev等人[14]。1972年,该团队使用SBS-PCM对红宝石主振荡功率放大(Master Oscillator Power-Amplifier, MOPA)激光器中的波前畸变进行补偿,使输出光束的发散角从2.5 mrad降低至0.15 mrad。其实验装置如图2所示,从振荡器出射的激光经过畸变介质后入射至SBS-PCM,畸变波前经过反演再次经过畸变介质并得到有效补偿,因此能够使从振荡器出射的近衍射极限激光在双程放大后仍保持近衍射极限输出,使用偏振片和1/4波片进行光隔离和输出,该结构也是SBS-PCM在MOPA激光器中的典型结构。

      图  2  Zel’dovich等人[14]采用的带有SBS-PCM的MOPA光路示意图

      Figure 2.  Optical layout of MOPA system with SBS-PCM adopted by Zel’dovich et al[14]

      带有SBS-PCM的高功率纳秒激光器的主要研究进展如表1所示,表中激光器输出能量(Output energy)和SBS-PCM注入能量(Input energy)仅针对重复频率较低的激光器进行列举。

      表 1  SBS-PCM在高功率纳秒激光器中的应用情况

      Table 1.  Applications of SBS-PCM in high power nanosecond lasers

      InstituteYearProperties of laser systemProperties of SBS-PCMRef.
      Output
      power/W
      Output
      energy/J
      Repetition
      rate/Hz
      Pulse
      duration/ns
      Beam
      quality
      MediumInput
      power/W
      Input
      energy/J
      Reflectivity
      America TRW199310010071.1 DLFreon 11330.585%[27]
      19976902.5 k201.1 DL200>90%[38]
      19989401007.52 DLLiquid10098%[39]
      America LLNL199515025-306141.25 DLCCl4152.588%[40]
      Japan Osaka University20033621 k291.2 DLFC-759075%[41]
      200436850501.5 DLFC-75 & FC-724398%[42]
      2012766100FC-75 & FC-72[43]
      Germany Technische Universität Berlin199710410090Fiber50%[44]
      20013152 kM2=2.6Fiber[30]
      Australia EOS201780017020M2~3FC-77015395.2%[45]
      China HIT2008106.620 min per shot20CCl4>30~60%[46]
      China ZJU2011421 k1.5M2~2.3Fiber50%[36]
      China AOE20171 k2006.61.7 DLFC-770220 W98%[3]
      201855050010M2~2FC-770150 W92%[47]

      1998年,以色列Soreq原子能研究中心的Jackel等人[48]将以纯度为99.9%的高压甲烷气体为介质的SBS-PCM使用在高能量钕玻璃激光器中。当甲烷气体压强达到105 atm时,注入光脉宽为200 ns,最高注入能量可达5 J,饱和能量反射率为90%。在其研究中发现,提升介质气体的压强能够降低SBS的能量阈值并提升能量反射率,但同时会降低气体的击穿能量阈值,为避免击穿可使用长焦距透镜降低焦点处的能量密度。

      2000年,日本大阪大学的Kmetik等人[49]在GEKKO-XII激光装置上进行了大能量SBS-PCM实验。使用FC-75重氟碳液体作为介质,并在超净环境下使用孔径25 nm的滤膜对FC-75进行过滤处理,制作了Φ90×2 000 mm的大口径SBS-PCM。实验中最大注入能量为73 J,饱和能量反射率超过90%且未发生击穿现象。其研究认为,杂质的加热和热致电离是光学击穿起始阶段的主要原因,此后大量的热释电子足以导致介质中的雪崩电离,因此对液体介质进行高效过滤能够有效提升SBS的击穿阈值。

      随着激光器技术的发展及应用场景对激光器需求的提升,高功率纳秒激光器逐渐向高重复频率、高平均功率和高亮度的方向发展。因此研究人员也逐步开始将SBS-PCM应用于高重复频率、高平均功率的纳秒激光器中。20世纪90年代,美国TRW公司的Pierre等人对带有SBS-PCM的MOPA结构高重复频率高平均功率纳秒激光器进行了大量研究工作[27, 39, 50],并获得了很多标志性的成果。

      1993年,Pierre等人[27]使用LD阵列泵浦Nd3+:YAG板条晶体的MOPA激光器和SBS-PCM,实现了单脉冲能量1 J、重复频率100 Hz、平均功率100 W、光束质量1.1 DL的激光输出。其SBS-PCM采用氟利昂作为介质,这是世界上首套采用液体介质SBS-PCM实现百瓦级平均功率的激光器。

      1997年,Pierre等人[38]使用带有SBS-PCM的MOPA结构激光器获得了平均功率690 W、重复频率2.5 kHz、光束质量1.1 DL的激光输出,这是目前为止带有SBS-PCM的激光器在高于千赫兹的重复频率下获得的最高平均功率。其光路如图3所示,SBS-PCM的注入光平均功率高达200 W,因此在SBS-PCM前放置了扫描楔形镜(Scanning Wedge)进行光束扫描,使光束焦点位置在SBS-PCM介质中旋转,以降低高功率注入光引入的热效应。

      图  3  Pierre等人[38]研制的690 W激光器光路示意图

      Figure 3.  Optical layout of 690 W laser system developed by Pierre et al[38]

      1998年,Pierre等人[39]研制了如图4所示的激光器,该激光器能够在33 Hz和50 Hz的重复频率下输出单脉冲能量10 J的激光,对应光束质量分别为1.25 DL和1.5 DL,在100 Hz重复频率下能够输出平均功率940 W、光束质量2 DL的激光。其SBS-PCM能够在50 Hz重复频率下承载100 W的注入光功率,且能量反射率高达98%。该激光器是首套输出平均功率能够达到近千瓦的带有SBS-PCM的高光束质量激光器。

      图  4  Pierre等人[39]研制的940 W激光器光路示意图

      Figure 4.  Optical layout of 940 W laser system developed by Pierre et al[39]

      日本大阪大学的Yoshida等人针对液体SBS-PCM介质的选择开展了大量研究工作,并发现FC-72和FC-75等重氟碳液体具有很高的光学击穿阈值,在紫外至红外的宽光谱范围内吸收系数很小,且SBS增益系数大、化学性质稳定,是作为SBS-PCM介质的理想选择[26]。此后,诸多机构开展了大量以重氟碳液体作为SBS-PCM介质的研究工作[42-43, 51-54]

      2005年,日本原子能研究所的Kiriyama等人[41]研制了如图5所示的激光器,该激光器能够在1 kHz重复频率下输出平均功率362 W的激光,其SBS-PCM使用的介质为FC-75,可承载最高注入功率约90 W,能量反射率为75%。

      图  5  Kiriyama等人[41]研制的362 W激光器光路示意图

      Figure 5.  Optical layout of 362 W laser system developed by Kiriyama et al[41]

      2012年,Yoshida等人[43]以FC-72和FC-75作为SBS-PCM的介质,研制了重复频率100 Hz、平均功率766 W的高水平激光器,如图6所示,其输出激光分为两束,两个放大链路中均使用SBS-PCM进行畸变补偿,放大后的平均功率分别为398 W和368 W。

      图  6  Yoshida等人[43]研制的766 W激光器光路示意图

      Figure 6.  Optical layout of 766 W laser system developed by Yoshida et al[43]

      2017年,澳大利亚EOS的Gao等人[45]研制了重复频率170 Hz、平均功率约800 W、光束质量因子M2~3的高功率激光器,其SBS-PCM使用FC-770为介质,注入功率约为153 W,能量反射率达到95.2%。

      德国柏林工业大学的Eichler等人对以光纤为介质的SBS-PCM开展了大量研究工作[44, 55-56],并于1997年[44]首次将光纤SBS-PCM应用于MOPA结构的Nd3+:YALO激光器中,获得了重复频率100 Hz、平均功率104 W的激光输出,其SBS-PCM的能量反射率达50%以上。

      2001年,Eichler等人[30]利用如图7所示的激光器中获得了平均功率315 W、重复频率2 kHz、光束质量因子M2=2.6的激光输出。在该激光器中,种子光被分为两束分别进行放大并均使用SBS-PCM进行畸变补偿,然后通过偏振合束合为一束。

      图  7  Eichler等人[30]研制的带有光纤SBS-PCM的MOPA系统光路示意图

      Figure 7.  MOPA system with fiber SBS-PCM developed by Eichler et al[30]

      我国对SBS-PCM技术的研究起步较晚,主要研究机构为哈尔滨工业大学、浙江大学、中国科学院光电研究院、华北光电技术研究所和中国工程物理研究院等单位[52, 54, 57-59]

      哈尔滨工业大学对SBS-PCM的研究主要聚焦于大能量激光器上,2008年,王雨雷等人[46]将CCl4作为SBS-PCM介质并进行了百焦耳激光器搭建,其激光器光路如图8所示,SBS-PCM可承载的注入能量超过30 J,能够有效补偿放大器RA70-1中的热畸变,改善光束质量。整体装置能够在每20 min输出一次平均能量为106.6 J的激光,且进场光斑强度分布均匀,有良好的光束质量。

      图  8  王雨雷等人[46]研制的百焦耳级激光器光路示意图

      Figure 8.  Optical layout of 100 J level laser system developed by Wang et al[46]

      浙江大学在光纤SBS-PCM方面进行了大量研究工作,2011年,赵智刚等人[36]使用前端直径1 mm、尾端直径0.4 mm的锥形光纤作为SBS-PCM,对双通放大MOPA激光器进行了光束质量优化。其装置如图9所示,能够在1 kHz的重复频率下输出平均功率42 W、光束质量因子M2~2.3的激光。

      图  9  赵智刚等人[36]的实验装置原理图

      Figure 9.  Schematic diagram of the experimental setup adopted by Zhao et al[36]

      中国科学院光电研究院着手于以FC重氟碳液体作为介质的高负载SBS-PCM研究工作,并取得了显著的成果。2017年,樊仲维等人[3]研发了可用于汤姆逊散射诊断的高平均功率激光器,在200 Hz重复频率下能够输出平均功率1 kW、光束质量1.7 DL的高质量脉冲激光,该激光器的输出平均功率及光束质量达到了同类激光器的领先水平。其光路如图10所示,SBS-PCM采用FC-770作为介质,种子光经过Pre-amplifier unit的功率放大和Beam control unit的畸变补偿后,平均功率达到60 W,而后经过AMP5~AMP7三级板条放大器将平均功率进一步提升至1 kW。可以看到SBS-PCM只对AMP3和AMP4两级放大器进行了热畸变补偿,可能的原因是SBS-PCM的可承载功率有限,因此若能进一步提升SBS-PCM的可承载功率,使其在光路中的位置向后级移动以补偿更多级放大器中的热畸变,结合合理的放大器增益配比,有望在保持同水平输出平均功率的同时获得更好的光束质量。

      图  10  樊仲维等人[3]研制的1 kW激光器光路示意图

      Figure 10.  Optical layout of 1 kW laser system developed by Fan et al[3]

      2018年,康治军等人[47]使用SBS-PCM研制了如图11所示的可用于空间碎片探测的高平均功率激光器,能够在500 Hz重复频率下输出平均功率550 W、光束质量因子M2~2的激光脉冲。其SBS-PCM用于补偿Postamplifier unit 1中四级放大器的热畸变,可承载注入光功率达150 W,能量反射率为92%,介质采用高效过滤后的FC-770,能够有效避免光学击穿的发生。

      图  11  康治军等人[47]研制的550 W激光器光路示意图

      Figure 11.  Optical layout of 550 W laser system developed by Kang et al[47]

    • SBS-PCM具有相位共轭特性,能够实时补偿激光放大器中的波前畸变,因此广泛应用于高光束质量的高功率激光器中,目前带有SBS-PCM的激光器的平均功率和重复频率分别可达到千瓦和千赫兹量级,并能够保持良好的光束质量。在诸多SBS-PCM的介质中,气体介质由于SBS增益系数低且安全性差已被逐渐取代;固体介质易发生永久损伤,只有光纤仍较为广泛地被用作SBS-PCM介质,尤其适用于重复频率千赫兹量级的激光器中,但其端面损伤阈值较低,现有研究中的注入光单脉冲能量多为几十豪焦以下[33],因此不适用于单脉冲能量较大的激光器;而以重氟碳为代表的液体介质具有化学性质稳定、吸收系数极低、击穿阈值和SBS增益系数高等诸多优点,因此被广泛应用于高重复频率、高平均功率激光器中。

      目前,液体介质SBS-PCM的主要瓶颈是高注入光功率引发的热效应会影响装置运行的稳定性。为此,通常采用光束扫描[60]或循环介质[61]的动态工作方式和高效过滤介质[47, 54]的静态工作方式。其中动态工作方式将明显增加装置的复杂程度,削弱了SBS-PCM结构简单的优点,且额外的机械、电机结构也会降低装置的稳定性。而静态工作方式的难点主要在介质的过滤工艺上,封装后不会对激光器增添复杂性,因此优化提纯工艺或开发具有更好光学特性和热特性的介质将成为国内外对SBS-PCM的研究热点。

参考文献 (61)

目录

    /

    返回文章
    返回