-
3~5 μm波段位于大气窗口,且涵盖了许多原子、分子的吸收峰,使得该波段的中红外激光在红外遥感、环境监测、医疗诊断和自由空间光通信[1-5]等方面都有重要的应用价值。目前,中红外激光光源的主要实现方式包括光纤激光器、量子级联激光器[6]、化学激光器和光参量振荡器[7]等。其中,光参量振荡器是获得高重复频率、高峰值功率中红外激光输出的主要方式。
目前,用于光参量振荡产生中红外激光的非线性晶体主要包括磷酸氧钛钾(KTP)、硒镓银(AgGaSe2)、磷锗锌(ZnGeP2)、周期性极化铌酸锂(PPLN)等[8-10]。MgO: PPLN晶体具有良好的物化特性和较高的非线性系数[11-12],是获取中红外激光输出的理想晶体之一。由于采用纳秒激光泵浦源,可以有效提高OPO的转换效率,获得高功率中红外激光输出[13],因此MgO: PPLN 在纳秒中红外激光光参量振荡器中被广泛研究。
Lei Guo等设计研究了一种室温下的高效率MgO: PPLN光参量振荡器,利用声光调Q Tm: YAP激光器产生的1937 nm激光作为泵浦光,在简并点3.87 μm处获得最大输出功率1.2 W,其中,单脉冲能量和峰值功率分别为0.2 mJ和2.67 kW[14]。Ishizuki等采用10 Hz、10 ns、709 mJ的1064 nm基频光泵浦10 mm 厚的PPLN晶体,获得540 mJ的脉冲参量光输出[15],该报道中虽然获得了较高的参量光峰值功率,但重复频率较低。山东大学何京良课题组采用高功率纳秒1064 nm激光器泵浦2 mm厚的PPLN晶体, 实现了高功率、高效率的简并点OPO参量光输出[16] ,在 重频30 kHz工作时,3.79 μm的脉冲宽度为18.65 ns, 对应的单脉冲能量和峰值功率分别为0.34 mJ和18.2 kW。2021年,蒋星晨等采用重复频率25~35 kHz、脉冲宽度51 ns的1064 nm激光器泵浦MgO: PPLN光参量振荡器, 在35 kHz频率下获得了最大输出功率0.45 W、10.75 ns、3842.5 nm中红外激光输出[17],对应的单脉冲能量和峰值功率分别为0.013 mJ和1.196 kW。根据以上分析可知,在基于MgO: PPLN的纳秒光参量振荡器中,同时实现高重复频率和高峰值功率仍然存在较大技术难度。
文中采用高重复频率1064 nm纳秒激光泵浦基于MgO: PPLN 的光参量振荡器,MgO: PPLN尺寸为50 mm×3 mm×1 mm,当MgO: PPLN温度为80 ℃、基频光功率为11.83 W时,获得了平均功率1.74 W、重复频30 kHz,脉冲宽度1.19 ns的3.93 μm中红外激光输出,对应峰值功率为48.5 kW。在泵浦功率相同时,实验研究了基频光重复频率分别为30 kHz、40 kHz、50 kHz的条件下,闲频光输出功率、转换效率的变化,根据实验结果,选取最大转换效率工作点。在此基础上,进一步开展了光参量振荡器的温度调谐实验,得到了与理论曲线符合较好的实验结果。
-
实验采用1064 nm激光泵浦MgO: PPLN OPO单谐振腔结构,实验装置如图1所示。1064 nm激光器为一台基于主振荡功率放大(Master Oscillator Power-Amplifier, MOPA)构型的电光调Q激光器,其平均功率输出≥50 W,重复频率在30~100 kHz范围内可调,光束质量M2≤1.8,光斑直径≤4 mm。为了便于控制基频光的热稳定参数,将λ/2波片和光隔离器组合使用,通过调节λ/2波片控制隔离器后的基频光功率。进而通过一组4倍缩束系统,将基频光光束尺寸压缩整形后,注入MgO: PPLN OPO。
为提高转换效率,光参量振荡器采用单谐振平凹腔结构,谐振腔长度为83 mm。M1是平行平面镜,镀有1064 nm高透膜,1.4~1.7 μm高反膜;M2是R= −100 mm的平凹输出镜,凹面朝向谐振腔内,该面镀有1.4~1.7 μm高反膜,1064 nm和3.8~4.5 μm高透膜。 M1和M2构成光参量振荡器的谐振腔,基频光和闲频光经过谐振腔直接输出,信号光在谐振腔内振荡。MgO: PPLN尺寸为50 mm×3 mm×1 mm,极化周期Λ=29 μm,5 mol% MgO掺杂。晶体两端均镀有对基频光、信号光和闲频光波段(AR@1064 nm &1.3~1.6 μm & 3.8~4.5 μm)的增透膜。MgO: PPLN晶体置于温控炉内,温度控制范围为25~200 ℃,温控精度为 ± 0.1 ℃。M3镀有45° 1064 nm高反膜和3.8~4.5 μm高透膜,用于将基频光与闲频光分开,在M3后得到中红外闲频光输出。
-
1064 nm基频光的性能对OPO输出有重要影响。实验中采用泰克DPO4104 B示波器及DET10光电探测器、分别测量了30~50 kHz基频光的重复频率与脉冲宽度,其中30 kHz和50 kHz重复频率和单脉冲波形测试结果如图2所示。
图2所示的基频光的脉宽和重复频率测试结果表明,1064 nm基频光在30 kHz重复频率下输出脉冲宽度为3.2 ns,相比于50 kHz重复频率下的3.9 ns更窄。
采用Ophir-sp620型光束质量分析仪测试了基频光在30 kHz输出时的光束质量,测试结果如图3所示。
$ M_x^2 $ =1.62$ M_y^2 $ =1.53。 -
采用上述1064 nm 激光器泵浦MgO: PPLN光参量振荡器。将MgO: PPLN晶体温度控制在80 ℃,闲频光输出功率与基频光重复频率及功率的关系如图4(a)所示。当30 kHz的1064 nm激光抽运功率达到11.83 W时,得到输出功率1.744 W的3.93 μm闲频光。为防止光参量晶体的损伤,未进一步提高基频光功率。根据不同泵浦功率下对应的闲频光输出结果,计算了不同频率基频光与闲频光的功率转化曲线,计算结果如图4(b)所示。图中横坐标为基频光功率,纵坐标为泵浦光至闲频光的转换效率,当基频光功率接近12 W时,三种重复频率的转换效率都大于10%。当基频光功率相同时,30 kHz频率相对于40、50 kHz有更高的转换效率,最高光光转换效率14.71%。同等注入功率条件下,闲频光的输出功率和光-光转换效率随着重频增加而降低。
-
实验中,通过示波器及VIGO中波光电探测器,对3.93 μm的闲频光在不同重复频率下的脉冲宽度进行了测试,测试结果如图5所示。
图 5 3.93 μm 闲频光在不同重复频率下的脉冲宽度
Figure 5. The pulse duration of 3.93 μm idler laser at different repetition rates
当激光器工作在30 kHz时,获得了脉冲宽度为1.197 ns的3.93 μm激光输出,相对于40 kHz和50 kHz工作状态下脉冲宽度更窄,主要是因为基频光在30 kHz时脉冲宽度更窄。闲频光相对于基频光脉冲宽度出现明显压缩,主要是因为光参量振荡器在参量光产生的过程中会产生晶体吸收损耗以及振荡腔的腔损耗,低能量的部分被抑制。
由以上实验可看出,同等注入功率条件下,基频光以30 kHz工作比40、50 kHz具有更高的转换效率,这主要是因为同等注入功率条件下,30 kHz的基频光具有更高的单脉冲能量和峰值功率。
-
光参量转换过程需满足能量守恒和动量匹配条件,能量为hνp的基频光光子转化为能量为hvs的信号光光子和能量为hvi的闲频光光子[18],在这个过程中三波波长同时满足公式(1)和(2):
$$ \frac{1}{{{\lambda _p}}} = \frac{1}{{{\lambda _s}}} + \frac{1}{{{\lambda _i}}} $$ (1) $$ 2\pi \left[ {\frac{{{n_p}({\lambda _p},T)}}{{{\lambda _p}}} - \frac{{{n_s}({\lambda _s},T)}}{{{\lambda _s}}} - \frac{{{n_i}({\lambda _i},T)}}{{{\lambda _i}}} - \frac{1}{\varLambda }} \right] = \Delta {k_{opo}} $$ (2) 式中:p、s、i分别代表基频光、信号光和闲频光;λ为波长;n为折射率;Λ为晶体极化周期; Δkopo为最佳相位失配量,准相位匹配条件下Δkopo=0。通过以上两个方程式,可以看出当泵浦光波长一定时,改变温度可以实现闲频光和信号光波长的调谐。结合实际应用需求,实验中控制MgO: PPLN晶体温度在50~200 ℃温度变化,使用Aecopitx公司的CH-2000型中红外光谱仪测试了光参量振荡器的调谐波长,测试结果如图6所示。
图6 表明,当MgO: PPLN的温度在50~200 ℃范围改变时,其波长调谐范围为3770 ~3961 nm。进一步将MgO: PPLN OPO温度调谐实验测量结果与理论曲线的对比,对比结果如图7所示。光谱实验测量结果与理论曲线符合较好。
图 7 MgO: PPLN温度调谐理论曲线与实验结果对比
Figure 7. Comparison between experimental results and theoretical curve of temperature tuned MgO: PPLN
实验中采用刀口法测量了3.93 μm闲频光的光束质量,测试结果为
$ M_x^2 $ =2.12,$ M_y^2 $ =1.98。实验结果表明,经过OPO腔后,光束质量有一定程度的下降,在后续的研究中应优化OPO腔参数、增加选模措施,进一步提升光束质量。 -
采用1064 nm激光泵浦准相位匹配MgO: PPLN晶体,在重复频率30~50 kHz、脉冲宽度小于4 ns的高重频泵浦条件下,平均光光转化效率大于10%,实现了3770~3961 nm的波长调谐。通过对转换效率及脉冲宽度的测试,优化出最佳转换效率工作点,当基频光重复频率为30 kHz、脉冲宽度为3.2 ns、平均功率11.83 W时,获得平均功率1.744 W、脉冲宽度约1.2 ns,对应峰值功率为48.5 kW的3.93 μm激光输出,光光转化效率为14.71%。后续研究中将进一步研究该类型光参量振荡器提升峰值功率和光束质量优化的方法。
High repetition rate, high peak power mid-infrared optical parametric oscillator based on MgO: PPLN
-
摘要: 报道了一种基于周期性极化掺氧化镁铌酸锂晶体(MgO: PPLN)的高峰值功率、纳秒宽调谐中红外光参量振荡器(Optical parametric oscillation, OPO)。采用重复频率30~50 kHz、脉冲宽度小于4 ns的高光束质量1064 nm基频光泵浦基于极化周期为29 μm MgO: PPLN的OPO,当MgO: PPLN温度为80 ℃时获得30 kHz、脉宽1.19 ns、峰值功率48.45 kW的3.93 μm激光输出。在MgO: PPLN 温度区间为50~200 ℃时,中红外调谐输出波长为3.77~3.96 μm。根据实验结果分析讨论了不同重复频率下转换效率的特点、温度调谐特性与理论分析的一致性。
-
关键词:
- 光参量振荡器 /
- 周期性极化掺氧化镁铌酸锂晶体 /
- 中红外激光器 /
- 高峰值功率
Abstract: A widely tunable mid-infrared optical parametric oscillator (OPO) with high peak power, nanosecond pulses output, which was based on MgO-doped periodically poled LiNbO3 (MgO: PPLN) was reported in this paper. The MgO: PPLN OPO with a domain period of 29 μm was pumped by a fundamental laser of 1064 nm with high beam quality, and the fundamental laser operated at the repetition rates from 30 kHz to 50 kHz with the pulses duration less than 4 ns. The 48.45 kW peak power, 1.19 ns, and 30 kHz pulses at 3.93 μm were obtained, as the temperature of MgO: PPLN was at 80 ℃. The tunable range of mid-infrared wavelength was from 3.77 μm to 3.96 μm, as the temperature of MgO: PPLN was from 50 ℃ to 200 ℃. According to the experimental results, the characteristics of conversion efficiency and temperature tuning characteristics under different repetition rates were analyzed and discussed. -
-
[1] Kovalchuk E V, Dekorsy D, Lvovsky A I, et al. High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator [J]. Optics Letters, 2002, 26(18): 1430-1432. [2] Han Kezhen, Ning Jian, He Jingliang, et al. High-efficiency mid-infrared picosecond MgO: PPLN single resonant optical parametric oscillator [J]. Chinese Physics Letters, 2015, 32(5): 59-62. doi: 10.1088/0256-307X/32/5/054203 [3] Duan Yanming, Zhu Haiyong, Ruan Xiukai, et al. Cascaded OPO based on single KTA crystal for 2.6 μm laser generation [J]. High Power Laser and Particle Beams, 2016, 28(10): 160152. (in Chinese) doi: 10.11884/HPLPB201628.160152 [4] Yao Y, Hoffman A J, Gmachl C F. Mid-infrared quantum cascade lasers [J]. Nature Photonics, 2012, 6(7): 432-439. doi: 10.1038/nphoton.2012.143 [5] Vainio M, Siltanen M, Peltola J, et al. Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy [J]. Applied Optics, 2011, 50(4): A1-A10. doi: 10.1364/AO.50.0000A1 [6] 谭松. 应用于痕量气体检测的量子级联激光器研究 [D]; 清华大学, 2014. Tan Song. Study on quantum cascade lasers for trace gas detection [D]. Beijing: Tsinghua University, 2014. (in Chinese) [7] 赵家群. 基于MgO: PPLN的中红外连续波光学参量振荡器技术的研究 [D]; 哈尔滨工业大学, 2011. Zhao Jiaqun. Study on mid-infrared continuous wave optical parametric oscillator based on MgO: PPLN [D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese) [8] Komine H, Fukumoto J M, Long W H, et al. Noncritically phase matched mid-infrared generation in AgGaSe2 [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(1): 44-49. doi: 10.1109/2944.468373 [9] Yang J F, Zhang B T, He J L, et al. Intracavity optical parametric oscillator based on GTR-KTP pumped by diode-side-pumped acousto-optically Q-switched Nd: YAG laser [J]. Applied Physics B, 2010, 98(1): 49-54. doi: 10.1007/s00340-009-3695-5 [10] Jiang H L, Bian J T, Nie J S, et al. Theoretical and experimental investigation on the 2.7 μm laser pumped ZnGeP2 optical parametric oscillator generating 4.3 μm laser[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2010, 7655: 76551P. [11] Chen Yi, Liu Gaoyou, Wang Ruixue, et al. Research progress of nonlinear crystals applied to mid - and long-wave infrared solid lasers [J]. Journal of Artificial Crystals, 2020, 49(8): 1379. (in Chinese) [12] Qian Chuanpeng, Yu Ting, Liu Jing, et al. Research progress of all-solid-state mid-Infrared laser [J]. Modern Applied Physics, 2020, 11(4): 040102. (in Chinese) [13] Nie Hongkun, Ning Jian, Zhang Baitao, et al. Research progress of infrared optical parametric oscillators in optical superlattices [J]. Chinese Journal of Lasers, 2021, 48(5): 0501008. (in Chinese) doi: 10.3788/CJL202148.0501008 [14] Guo L, Yang Y, Zhao S, et al. Room temperature Watt-level 387 m MgO: PPLN optical parametric oscillator under pumping with a Tm: YAP laser [J]. Optics Express, 2020, 28(22): 32916. doi: 10.1364/OE.409093 [15] Ishizuki H, Taira T. Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3 [J]. Optics Express, 2012, 20(18): 20002-20010. doi: 10.1364/OE.20.020002 [16] Chen B Y, Yu Y J, Wu C T, et al. Research on high efficiency mid-infrared 3.8 μm MgO: PPLN optical parametric oscillator based on narrow linewidth 1 064 nm fiber laser pumped [J]. Chinese Optics, 2021, 14(2): 20200169. (in Chinese) [17] 蒋星晨,程德华,李业秋等.基于光参量振荡的35 kHz中红外激光器研究[J/OL].红外与激光工程: 1-6[2022-03-06] . http://kns.cnki.net/kcms/detail/12.1261.TN.20211206.1724.006.html. Jiang Xingcheng, Cheng Dehua, Li Yeqiu, et al, Research on 35 kHz mid-infrared laser based on optical parametric oscillation[J/OL]. Infrared and Laser Engineering. (2021-12-07)[2022-03-06].http://kns.cnki.net/kcms/detail/12.1261.TN.20211206.1724.006.html [18] Kolker D B, Sherstov I V, Kostyukova N Y, et al. Broadband mid-IR source based on a MgO: PPLN optical parametric oscillator [J]. Quantum Electronics, 2019, 49(2): 191-194. doi: 10.1070/QEL16872 -