Wu Weihui, Xiao Dongming, Mao Xing. Automatic design and laser additive manufacturing of supe-light structure of metal part[J]. Infrared and Laser Engineering, 2016, 45(11): 1106009-1106009(8). DOI: 10.3788/IRLA201645.1106009
Citation: Wu Weihui, Xiao Dongming, Mao Xing. Automatic design and laser additive manufacturing of supe-light structure of metal part[J]. Infrared and Laser Engineering, 2016, 45(11): 1106009-1106009(8). DOI: 10.3788/IRLA201645.1106009

Automatic design and laser additive manufacturing of supe-light structure of metal part

  • In order to solve the problems when designing supe-light structure part such as needing complex design techniques, long design cycle, difficult to add skin if making it by additive manufacturing technology, based on selective laser melting technology, a method which can automatically add skinned supe-light structure to traditional metal part CAD model was put forward in this paper. Considering the selective laser melting process characteristics, through an algorithm, a skinned supe-light quas-honeycomb structure part model with a preset porosity can be automatically designed by transforming an original CAD model. And the new part model data format can direct drive a selective laser melting machine for additive manufacturing without any data format transformation. The construction and design method of the skinned supe-light structure of metal part were studied. Through process analysis, appropriate processing unit length and reasonable skin tissue of supe-light structure metal part were gotten. The above method was tested successfully on a part model with complex shape in a selective laser melting experiment. The error of porosity is 2.79%, which means that this method can accurately reduce part mass according to preset porosity value. Therefore, in this way, skinned supe-light structure part can be design automatically and quickly based on an original CAD model without supe-light structure, the burden to design this kind of parts will be greatly reduced, and the practicability of the parts made through this method will be improved greatly.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return