Hou Shanglin, Lei Jingli, Wu Qiling, Wang Daobin, Li Xiaoxiao, Wang Huiqin, Cao Minghua. Enhanced femtosecond optical pulses compression in highly nonlinear photonic crystal fibers (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 103004-0103004(6). DOI: 10.3788/IRLA201948.0103004
Citation: Hou Shanglin, Lei Jingli, Wu Qiling, Wang Daobin, Li Xiaoxiao, Wang Huiqin, Cao Minghua. Enhanced femtosecond optical pulses compression in highly nonlinear photonic crystal fibers (invited)[J]. Infrared and Laser Engineering, 2019, 48(1): 103004-0103004(6). DOI: 10.3788/IRLA201948.0103004

Enhanced femtosecond optical pulses compression in highly nonlinear photonic crystal fibers (invited)

  • The soliton-effect compression of femtosecond optical pulses in highly nonlinear silica-core photonic crystal fiber at near-infrared spectrum region (especially at 850 nm) was numerically investigated by full-vector finite element method and split-step Fourier method. A novel SiO2 core photonic crystal fiber with an anomalous group velocity dispersion (2=-50.698 ps2/km), small higher-order dispersions and high nonlinearity (=268.419 1 W-1/km) for efficient soliton-effect compression of femtosecond optical pulses was proposed, the nonlinear Schrodinger equation including higher-order dispersions and Raman scattering was derived. The effect of the Gaussian pulses compression in HN-PCF was numerically investigated by taking account of the fiber length and the soliton order, and the second to fifth orders dispersion were analyzed. The research results show that Q factor and compression factor are maximum at the soliton order of 8. The effect of compression is best when the input pulse's energy P0=3 357.8 W. By optimizing the geometric and optical parameters of the fiber, the high-quality ultrashort optical pulses with little pedestal energy are obtained.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return