Development of beam brightness enhancement based on diamond Raman conversion
-
-
Abstract
High brightness laser sources with different wavelengths play an important role in the fields such as defense, industrial, and life sciences etc. However, due to the intrinsic spectral and thermophysical properties of current available laser gain materials, it is difficult to take into account the wavelength and output power of the traditional inversion lasers, which even leads to the decrease of beam brightness. To overcome this problem, beam cleanup by using nonlinear optical technology has been carried out in recent years, which is directly transferring the low beam quality generated from inversion lasers into the high through the effects such as stimulated Raman or Brillouin scattering. Among them, with excellent properties such as high Raman gain coefficient, high thermal conductivity and wide spectral transmission range, diamond exhibits excellent beam brightness enhancement characteristics while realizing high efficiency Raman conversion, which provides a new technical path to generate high power and high brightness laser beam. Here, the development of brightness enhancement based on first-order and cascaded Raman conversion of diamond was reviewed, and its future applications were discussed.
-
-