Volume 50 Issue 1
Jan.  2021
Turn off MathJax
Article Contents

Li Honglian, Wang Hongbao, Kang Shasha, Fang Lide, Li Xiaoting. LIBS experimental study of eliminating the interference of Al element in soil base based on background subtraction method[J]. Infrared and Laser Engineering, 2021, 50(1): 20200136. doi: 10.3788/IRLA20200136
Citation: Li Honglian, Wang Hongbao, Kang Shasha, Fang Lide, Li Xiaoting. LIBS experimental study of eliminating the interference of Al element in soil base based on background subtraction method[J]. Infrared and Laser Engineering, 2021, 50(1): 20200136. doi: 10.3788/IRLA20200136

LIBS experimental study of eliminating the interference of Al element in soil base based on background subtraction method

doi: 10.3788/IRLA20200136
  • Received Date: 2020-08-21
  • Rev Recd Date: 2020-10-25
  • Available Online: 2021-01-22
  • Publish Date: 2021-01-22
  • The pollution of heavy metals in the soil has seriously affected agriculture and food safety. Therefore, efficient and accurate detection of heavy metal pollution is a problem that needs to be solved urgently. When using laser induced breakdown spectroscopy (LIBS) to quantitatively analyze the Ni element in the soil, it was found that the characteristic peak of the Ni element with a wavelength of 373.68 nm in the soil would be affected by the spectral line of the Al element at 373.39 nm. Therefore, the spectra of pure aluminum-based soil and tableted soil were compared and measured. A method of using pure aluminum as the substrate and subtracting the spectral line of the Al element in the soil background to eliminate the interference of the Al element in the soil background to the Ni element was proposed. This method was called the background subtraction method. The experiment determined that the optimal delay time for both soil samples was 1.0 μs, and the lens-to-sample distance (LTSD) was 97 mm and 96 mm, respectively. The internal standard method was used to quantitatively analyze Ni in the two soil samples. The calibration curve fitting effect of the Ni element in the pure aluminum-based soil samples was good, the correlation coefficient R2 was 0.997, and the maximum standard deviation (RSD) was 4.34%. The relative error of the Ni element in the soil sample after the base background subtraction method was reduced to 4%. The experimental results show that: when using LIBS technology to measure the content of heavy metal elements in the soil, under the condition that the characteristic line of the element is limited, in order to avoid the interference of the line and improve the detection accuracy, the background subtraction method can effectively eliminate the line between the elements Interference.
  • [1] 白军红, 赵庆庆, 卢琼琼, 等. 白洋淀沼泽化区域土壤重金属含量的剖面分布特征——以烧车淀为例[J]. 湿地科学, 2013(2): 123-127.

    Bai Junhong, Zhao Qingqing, Lu Qiongqiong, et al. Profile distribution of soil heavy metals in the paludification region of Baiyangdian Lake—A case study of Shaochedian Lake [J]. Wetland Science, 2013(2): 123-127. (in Chinese)
    [2] 王宪双, 郭帅, 徐向君, 等. 基于激光诱导击穿光谱和拉曼光谱对四唑类化合物的快速识别和分类实验研究[J]. 中国光学, 2019, 12(4): 889-896.

    Wang Xianshuang, Guo Shuai, Xu Xiangjun, et al. Fast recognition and classification of tetrazole compounds based on laser-induced breakdown spectroscopy and raman spectroscopy [J]. Chinese Optics, 2019, 12(4): 889-896. (in Chinese)
    [3] Peter D Ilhardt, Jamie R Nuñez, Elizabeth H Denis, et al. High-resolution elemental mapping of the root-rhizosphere-soil continuum using laser-induced breakdown spectroscopy (LIBS) [J]. Soil Biology & Biochemistry, 2019, 131: 119-132.
    [4] 郑培超, 李晓娟, 王金梅, 等. 再加热双脉冲激光诱导击穿光谱技术对黄连中Cu和Pb的定量分析[J]. 物理学报, 2019, 68(12): 125202.

    Zhen Peichao, Li Xiaojuan, Wang Jinmei, et al. Quantitative analysis of Cu and Pb in Coptidis by reheated double pulse laser induced breakdown spectroscopy [J]. Acta Physica Sinica, 2019, 68(12): 125202. (in Chinese)
    [5] 丁宇, 熊雄, 赵兴强. 基于内标法的钢铁中硫和磷激光诱导击穿光谱定量分析[J]. 光子学报, 2018, 47(8): 0847011.

    Ding Yu, Xiong Xiong, Zhao Xingqiang. Quantitative analysis of laser-induced breakdown spectroscopy of P and S in steel sample based on internal standard method [J]. Acta Photonica Sinica, 2018, 47(8): 0847011. (in Chinese)
    [6] J Yongcheng, S Wen, Z Baohua, et al. Quantitative analysis of magnesium in soil by laser-induced breakdown spectroscopy coupled with nonlinear multivariate calibration [J]. Journal of Applied Spectroscopy, 2017, 84(4): 731-737. doi:  10.1007/s10812-017-0537-9
    [7] Yao S, Zhang J, Gao X, et al. The effect of pulse energy on plasma characteristics of femtosecondfilament assistedablation of soil [J]. Optics Communications, 2018, 425: 152-156. doi:  10.1016/j.optcom.2018.04.079
    [8] 郑培超, 谭癸宁, 王金梅, 等. 基底辅助激光诱导击穿光谱技术检测润滑油中的金属元素[J]. 中国激光, 2019, 46(7): 0711002.

    Zhen Peichao, Tan Guining, Wang Jinmei, et al. Detection of metallic elements in lubricating oil by substrate-assisted laser-induced breakdown spectroscopyv [J]. Chinese Journal of Lasers, 2019, 46(7): 0711002. (in Chinese)
    [9] 李文宏, 尚丽平, 武志翔, 等. 水泥中Al和Fe的激光诱导击穿光谱测量分析[J]. 红外与激光工程, 2015, 44(2): 508-512. doi:  10.3969/j.issn.1007-2276.2015.02.020

    Li Wenhong, Shang Liping, Wu Zhixiang, et al. Determination of Al and Fe in cement by laser-induced breakdown spectroscopy [J]. Infrared and Laser Engineering, 2015, 44(2): 508-512. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.02.020
    [10] 张贵银, 宋欢, 刘洋, 等. 激光诱导Ni等离子体特性的研究[J]. 光谱学与光谱分析, 2018, 38(8): 2578-2582.

    Zhang Guiyin, Song Huan, Liu Yang, et al. Investigation on the properties of laser induced Ni plasma [J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 2578-2582. (in Chinese)
    [11] 李占锋, 王芮雯, 邓琥, 等. 黄连中Pb的激光诱导击穿光谱测量分析[J]. 红外与激光工程, 2016, 45(10): 1006003.

    Li Zhanfeng, Wang Ruiwen, Deng Hu, et al. Laser induced breakdown spectroscopy of Pb in Coptis chinensis [J]. Infrared and Laser Engineering, 2016, 45(10): 1006003. (in Chinese)
    [12] 任佳, 高勋. 飞秒细丝-纳秒激光诱导击穿光谱技术对土壤重金属Pb元素检测[J]. 光学 精密工程, 2019, 27(5): 1069-1074. doi:  10.3788/OPE.20192705.1069

    Ren Jia, Gao Xun. Detection of heavy metal Pb in soil by filament-nanosecond laser induced breakdown spectroscopy [J]. Optics and Precision Engineering, 2019, 27(5): 1069-1074. (in Chinese) doi:  10.3788/OPE.20192705.1069
    [13] Wang T, He M, Shen T, et al. Multi-element analysis of heavy metal content in soils using laser-induced breakdown spectroscopy: A case study in eastern China [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 149: 300-312. doi:  10.1016/j.sab.2018.09.008
    [14] 陈世和, 陆继东, 张博, 等. 激光诱导击穿光谱法测量煤粉流的控制因素[J]. 光学 精密工程, 2013, 21(7): 1651-1658. doi:  10.3788/OPE.20132107.1651

    Chen Shihe, Lu Jidong, Zhang Bo, et al. Controllable factors in detection of pulverized coal flow with LIBS [J]. Optics and Precision Engineering, 2013, 21(7): 1651-1658. (in Chinese) doi:  10.3788/OPE.20132107.1651
    [15] 李昂泽, 王宪双, 徐向君, 等. 激光诱导击穿光谱技术对烟草快速分类研究[J]. 中国光学, 2019, 12(5): 1139-1146. doi:  10.3788/co.20191205.1139

    Li Angze, Wang Xianshuang, Xu Xiangjun, et al. Fast classification of tobacco based on laser-induced breakdown spectroscopy [J]. Chinese Optics, 2019, 12(5): 1139-1146. (in Chinese) doi:  10.3788/co.20191205.1139
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(1)

Article Metrics

Article views(374) PDF downloads(41) Cited by()

Related
Proportional views

LIBS experimental study of eliminating the interference of Al element in soil base based on background subtraction method

doi: 10.3788/IRLA20200136
  • 1. College of Quality and Technology Supervising, Hebei University, Baoding 071000, China
  • 2. National and Local Joint Engineering Center of Measuring Instruments and Metrology Systems, Baoding 071000, China

Abstract: The pollution of heavy metals in the soil has seriously affected agriculture and food safety. Therefore, efficient and accurate detection of heavy metal pollution is a problem that needs to be solved urgently. When using laser induced breakdown spectroscopy (LIBS) to quantitatively analyze the Ni element in the soil, it was found that the characteristic peak of the Ni element with a wavelength of 373.68 nm in the soil would be affected by the spectral line of the Al element at 373.39 nm. Therefore, the spectra of pure aluminum-based soil and tableted soil were compared and measured. A method of using pure aluminum as the substrate and subtracting the spectral line of the Al element in the soil background to eliminate the interference of the Al element in the soil background to the Ni element was proposed. This method was called the background subtraction method. The experiment determined that the optimal delay time for both soil samples was 1.0 μs, and the lens-to-sample distance (LTSD) was 97 mm and 96 mm, respectively. The internal standard method was used to quantitatively analyze Ni in the two soil samples. The calibration curve fitting effect of the Ni element in the pure aluminum-based soil samples was good, the correlation coefficient R2 was 0.997, and the maximum standard deviation (RSD) was 4.34%. The relative error of the Ni element in the soil sample after the base background subtraction method was reduced to 4%. The experimental results show that: when using LIBS technology to measure the content of heavy metal elements in the soil, under the condition that the characteristic line of the element is limited, in order to avoid the interference of the line and improve the detection accuracy, the background subtraction method can effectively eliminate the line between the elements Interference.

    • 土壤是生物圈的重要组成部分,也是人类赖以生存的物质基础和自然资源。高效、准确地检测土壤中的重金属元素是现代精准检测技术的基本要求。土壤的重金属元素Ni被植物吸收,人类通过进食被污染的植物,过量的Ni元素被囤积在人体中,对人体的健康造成了严重影响。一些地区Ni元素含量都超过了国家土壤质量一级标准[1]。LIBS技术经过多年的发展,已被广泛应用于水污染和土壤污染、植物样品检测、环境监测和燃烧等领域[2]。与目前常见的重金属检测手段相比,LIBS技术的突出优点在于分析时间短、所需样品量少、样品预处理较为简便、可避免二次污染、能同时对多种元素进行分析[3]。由于土壤中元素种类较多,采用LIBS技术对土壤中重金属元素进行测量时,土壤中的基底元素与待测元素谱线重叠会影响谱线强度分布、定量分析的精度。为了避免谱线重叠的干扰,常选取无元素干扰的谱线作为特征谱线。为了减小谱线重叠对测量精度的影响,郑培超[4]在采用再加热双脉冲LIBS技术对黄连中Cu、Pb元素定量分析时选取了元素的特征谱线为Cu I:324.46 nm、Pb I: 405.78 nm。丁宇[5]在采用内标法对钢铁中硫和磷进行定量分析时,选取了元素的特征谱线S II: 233.2 nm,Pb I: 253.5 nm。J. Yongcheng[6]等在采用LIBS与非线性多元回归相结合方法用于土壤中的镁(Mg)含量分析时,选取的特征谱线Mg I: 383.8 nm。

      而对于土壤中一些元素来说,诱导出的等离子体发射出的光谱信息是有限的,对应的元素的特征谱线也是有限的。Yao[7]在研究脉冲能量对飞秒成丝辅助诱导土壤中重金属元素等离子体参数的空间和时间分辨演化过程中,选取的Pb元素的特征谱线为Pb I:405.78 nm。谱线强度较好,但谱线Pb I: 405.78 nm右侧存在其他元素谱线重叠的现象,这将对等离子体特性的分析产生一定的影响。郑培超[8]在检测润滑油中金属元素时,以纯Al作为基底,对纯Al基底中未含的Mg、Cr等金属元素进行了定量分析,避免基底元素对待测元素的干扰。

      综上所述,所引参考文献研究团队在采用LIBS技术对土壤中重金属检测时一般选择谱线强度较大同时无其他元素谱线干扰的谱线作为元素特征谱线,对谱线干扰进行消除的方法却鲜有报道,因此文中提出了一种背景扣除法对土壤中其他元素谱线的干扰进行消除。实验以纯Al作为基底,采用纯Al基底谱线扣除土壤背景中Al元素的谱线,进而消除土壤背景中Al元素对Ni元素干扰。以纯Al基底土壤样品和压片土壤样品为研究对象,对样品中的Ni元素的光谱进行了对比测量研究。实验结果表明该方法能够有效提高实验结果的测量精度。

    • 实验采用输出波长为532 nm的Nd:YAG (镭宝,Vitle 200)脉冲激光器作为激发光源,单脉冲能量为32 mJ,脉冲宽度为8 ns,脉冲重复频率为6 Hz。在实验室大气环境下,激光光束经焦距为100 mm的透镜会聚后作用在样品表面,产生的激光诱导等离子体发射出的光谱信息直接耦合至光纤,并传输至光谱仪实现光谱的分光与探测,光谱仪采用美国,海洋光学MAX2500+,可测量的波长范围为200~960 nm,分辨率为0.1 nm。样品置于旋转的工作平台上。实验系统原理图如图1所示。实验所用材料取自河北大学校园,经自然风干、研磨、过筛后,分别在样品中加入光谱纯试剂Ni粉。配置成Ni标称含量分别为0.02%、0.05%、0.2%、0.35%、0.65%、0.85%、1.15%的标准系列,并将每种浓度的土壤样品各分为两等份。一类样品中加入适量饱和蔗糖溶液作为粘合剂,混合后用769YP-15A型粉末压片机压制成直径为15 mm、厚度为5 mm的原片状样品。同时将制好的土壤样品放入GZX-9070MBW型数显鼓风干燥箱中80 ℃下烘干备用。另外一份土壤样品采取与压片土壤样品等量的土壤加入去离子水制成泥浆,均匀的涂在5 cm×5 cm的铝板(99.9%),自然风干。

      Figure 1.  Schematic diagram of experimental system

    • 设置不同的延迟时间,对Ni I: 373.68 nm进行测量。在激光能量32 mJ时,每个延迟时间下,测量了5组实验数据,并且每组采集10次激光击打的光谱信息,最终每个延迟时间下特征元素的谱线强度为50次实验数据的平均值。图2为两种土壤样品中Ni I: 373.68 nm信噪比随延迟时间的变化关系。由于连续背景光谱与特征光谱存在时间差,在发生光学击穿时连续光谱的强度会随着延迟时间呈现一个先增加后逐渐减弱的趋势。而特征光谱在连续背景光谱之后随着延迟时间的增加呈现先增加后减小的变化趋势,所以可以通过时间分辨的方法来减小连续背景光谱对特征光谱的影响,找到一个最佳的延迟时间,使得特征谱线的信噪比(Signal noise ratio, SNR)达到最大值[9-10]。如图2所示两种土壤样品中Ni I: 373.68 nm信噪比在0~1.5 μs呈现先增加后减小的变化趋势,当延迟时间td=1.0 μs时,两种土壤中的Ni I: 373.68 nm的信噪比均为最大,所以延迟时间设置为1.0 μs最合适。

      Figure 2.  Variation of signal-to-noise ratio of Ni spectral signals with delay time in two soil samples

    • LIBS实验中,由于LIBS光谱信号强度受到激光烧蚀面积的影响,烧蚀面积越大,样品被剥离和激发的原子数量多,电子密度大,那么信号强度也就越大,但随着光斑面积的增大,激光的能量密度在逐渐减小,击穿能力也随之减小。因此实验需要寻找最佳的透镜到样品的距离(Lens to sample distance,LTSD)[11-13]。文中实验采用的透镜焦距为100 mm,如图3所示在透镜到样品的距离为92~100 nm时,两种土壤样品中Ni I: 373.68 nm的光谱信噪比SNR呈现先增加后减小的变化趋势。由图所示压片土壤样品中Ni信噪比SNR最大值在LTSD=96 mm时,纯Al基底土壤样品中Ni的信噪比最大值在LTSD=97 mm时。由于两种土壤样品紧实程度不同,因此两种不同土壤样品最佳LTSD不同。

      Figure 3.  Variation of signal-to-noise ratio of Ni element spectral signals with LTSD in two soil samples

    • 图4所示,以Ni含量均为0.05%的纯Al基底的土壤样品和压片土壤样品在波长为370~400 nm范围的光谱图。由光谱图可以看出,在波长为373.68 nm的Ni元素的特征峰,会受到373.39 nm处的Al元素的特征峰的影响。因此对Ni进行定量分析时,应消除土壤中的Al元素对特征峰的影响。在波长为390~400 nm范围内,两种土壤在这个波段内Fe元素的特征峰的峰值较高,因此不能作为Ni元素的内标曲线。且在396.79 nm处Fe元素的原子谱线受谱线Al I:396.11 nm谱线重叠的影响,峰值强度则会偏高。

      Figure 4.  Spectra line of pure aluminum substrate soil and tablet soil at 370-400 nm

      图5所示为纯Al基底和以纯Al为基底的土壤样品的光谱图。在纯Al的谱图中可以看出谱线在Al I:373.39 nm处的特征峰,左右均无其他谱线影响,所以可以用来扣除土壤中Al元素对Ni元素的谱线的影响。

      Figure 5.  Spectrum line of pure aluminum substrate soil and pure aluminum in the range of 370-400 nm

      图6所示蓝色谱线为纯Al基底土壤扣除Al元素基底背景后的元素谱线,黑色谱线为纯Al基底土壤样品的元素谱线。由图5可以清晰地看出:扣除Al元素的基底背景后,消除了土壤中Al I:373.39 nm的谱线对待测元素Ni I:373.68 nm的特征谱线的干扰,因此可以用于进行定量分析。

      Figure 6.  370-400 nm spectrum line of pure aluminum substrate soil sample with Al deducted

    • 经过上述基础实验研究,优化后的实验条件为:激光能量为32 mJ,延迟时间为1.0 μs,LTSD取96 mm对压片土壤样品进行定量分析。在LTSD为97 nm时对纯Al基底的土壤样品进行定量分析。每个样品取5个不同的位置,每个位置采集10个过普信号,每个光谱信号为10次连续击打采集的激发信号的平均值。对含不同浓度Ni元素土壤标样(0.02%、0.05%、0.35%、0.65%和1.15%)的LIBS谱线进行采集。采用谱线强度比分别建立Ni I: 373.68 nm的定标曲线,Fe I: 309.27 nm作为内标线,Fe I: 309.27 nm由于不是共振线,避免了自吸收产生的影响,确保了谱线信号强度的稳定性;同时该谱线的上下能级差与Ni I: 373.68 nm的上下能级差接近,从而尽可能保证它们有相近的激发状态[14-15]。实验中笔者所在课题组分别测量了两种不同土壤样品中Ni I: 373.68 nm的谱线强度,然后以Fe I: 309.27 nm作为内标线建立基于内标法的Ni元素标准曲线。如图7所示为两种土壤样品中Ni的内标法建立的定标曲线。压片土壤样品中Ni的定标曲线的相关系数R2为0.992,纯Al基底土壤样品中Ni的定标曲线的相关系数R2为0.997。计算两种土壤样品谱线最大相对标准偏差(RSD)纯Al基底土壤样品为4.34%,压片土壤样品为3.47%。纯Al基底定标曲线中相关系数相对较高,但实验的稳定性较差,与土壤样品的松软程度有关,压片土壤较为紧实,纯Al基底土壤样品紧实度较差一些,因此稳定性较差。

      Figure 7.  Internal standard calibration curve of Ni in two soil samples

    • 在最佳实验条件下对两种土壤样品中不同含量的样品(0.2%、0.85%)进行定量分析(表1),每个样品同样采集50个光谱叠加求平均。选择Ni I: 373.68 nm作为分析线。结果表明,采用内标法对两种样品进行定量分析时,得到压片土壤样品Ni元素最大相对误差为6.1%,纯Al基底土壤样品Ni元素最大相对误差为4%。

      NiStandard concentrationExperimental fitted valueRelative error
      0.20%0.210%5.0%
      Soil tablet0.85%0.902%6.1%
      0.20%0.192%4.0%
      Al substrate0.85%0.880%3.5%

      Table 1.  Comparison results of internal standard method for quantitative analysis of two soil samples

    • 采用背景扣除的方法,在最佳实验条件下以内标法对两种土壤样品中的Ni进行了定量分析。实验结果表明,以纯Al基底的Ni定标曲线的线性相关系数R2为0.997,相关性较高。但纯Al基底的土壤样品谱线得到的最大标准偏差(RSD)为4.34%,比压片土壤谱线的稳定性差,这与土壤样品的紧实度有关。对两种土壤样品中Ni元素的数学模型进行了实验验证。压片土壤的Ni元素最大相对误差为6.1%、纯Al基底的Ni元素最大相对误差为4%。在近期报道中,郑培超[8]采用纯Al基底作为辅助,检测润滑油中Ni元素,结果显示Ni元素的平均相对误差为13.66%。文中实验采用基底背景扣除法后的纯Al基底土壤样品中Ni元素检测的相对误差降低到4%,提高了检测精度。在对土壤样品中的元素进行定量分析过程中,元素间的干扰普遍存在。在元素特征谱线有限的情况下,为避免谱线干扰,提高检测精度,采用背景扣除的方法能够有效地消除元素间的谱线的干扰。

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return