Volume 50 Issue 7
Jul.  2021
Turn off MathJax
Article Contents

Wan Le, Shi Shihong, Xia Zhixin, Zhang Xiaozu, Fu Geyan, Zhang Rongwei, Li Kuan. Laser preheating/fluid cooling assisted laser metal deposition of AlSi10Mg[J]. Infrared and Laser Engineering, 2021, 50(7): 20200365. doi: 10.3788/IRLA20200365
Citation: Wan Le, Shi Shihong, Xia Zhixin, Zhang Xiaozu, Fu Geyan, Zhang Rongwei, Li Kuan. Laser preheating/fluid cooling assisted laser metal deposition of AlSi10Mg[J]. Infrared and Laser Engineering, 2021, 50(7): 20200365. doi: 10.3788/IRLA20200365

Laser preheating/fluid cooling assisted laser metal deposition of AlSi10Mg

doi: 10.3788/IRLA20200365
  • Received Date: 2020-11-15
  • Rev Recd Date: 2021-01-20
  • Publish Date: 2021-07-25
  • It is difficult to form aluminum alloy stablely by laser metal deposition(LMD) due to high thermal conductivity, low laser absorptivity, and significant heat accumulation effect. To realize automatic and accurate preheating, eliminating heat accumulation, analyzing the effect of preheating and improving the forming ability of AlSi10Mg aluminum alloy LMD, the technology of laser metal deposition with "internal powder feeding" and Ar supply protection was adopted, the laser preheating and fluid cooling temperature control system was designed and the preheating and cooling temperature control model was established, LMD forming experiments of AlSi10Mg aluminum alloy was carried out, the effects of preheating on laser absorptivity, surface quality, cross-section morphology, temperature field, microstructure and properties of aluminum alloy were systematically analyzed. The results show that the laser preheating and fluid cooling temperature control system can realize accurate preheating and eliminate heat accumulation, obtain a single track with a surface roughness Ra of 2.6 μm. High precision, high efficiency and stable LMD forming of AlSi10Mg overlap, block and thin-wall are realized. Preheating can improve the laser absorptivity, flatten the track and increase the grain size. The assist system and method can effectively solve the problem of insufficient forming stability of aluminum alloy LMD, and provide a new idea and process for forming quality control and molten temperature controlling.
  • [1] Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Materialia, 2016, 117(9): 311-320.
    [2] Thijs L, Kempen K, Kruth J-P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder [J]. Acta Materialia, 2013, 61(5): 1809-1819. doi:  10.1016/j.actamat.2012.11.052
    [3] Zhang J, Song B, Wei Q, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. Journal of Materials Science & Technology, 2019, 35(2): 270-284.
    [4] Buchbinder D, Meiners W, Pirch N, et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting [J]. Journal of Laser Applications, 2014, 26(1): 012004. doi:  10.2351/1.4828755
    [5] Li Yongqiang, Zhao He, Zhang Weihua, et al. Laser lap welding of aluminum alloy with preheating [J]. Journal of Mechanical Engineering, 2009, 45(2): 251-254. (in Chinese) doi:  10.3901/JME.2009.02.251
    [6] Shang C, Wang C, Li C, et al. Eliminating the crack of laser 3D printed functionally graded material from TA15 to Inconel718 by base preheating [J]. Optics & Laser Technology, 2020, 126: 106100.
    [7] He Bo, Wang Chen, Sun Changqin, et al. Effect of substrate preheating on Microstructure and properties of laser-deposited TA15/GH4169 composite structure [J]. Chinese Journal of Lasers, 2020, 47(1): 102002. (in Chinese) doi:  10.3788/CJL202047.0102002
    [8] He Bo, Wang Chen, Sun Changqin, et al. Study on microstructure and properties of gradient layers of laser deposited ta15/gh4169 gradient composite structure under preheating [J]. Rare Metal, 2019, 43(4): 1-8. (in Chinese)
    [9] Li Yongqiang, Zhao Xihua, Zhao He, et al. Effect of preheating temperature on weld shaping and microstructure for laser lap welding of aluminum alloy [J]. Journal of Jilin Unive rsity, 2008(5): 1065-1068. (in Chinese)
    [10] Casati R, Hamidi Nasab M, Coduri M, et al. Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting [J]. Metals, 2018, 8(11): 954. doi:  10.3390/met8110954
    [11] Liu Y, Liu C, Liu W, et al. Optimization of parameters in laser powder deposition AlSi10Mg alloy using Taguchi method [J]. Optics & Laser Technology, 2019, 111: 470-480.
    [12] Lv Fei, Tian Zongjun, Liang Huixin, et al. Microstructures and mechanical properties of AlSi10Mg aluminum alloy fabricated by laser melting deposition [J]. Journal of South China University of Technology, 2018, 46(10): 117-125. (in Chinese)
    [13] Zhang Wenqi, Zhu Haihong, Hu Zhiheng, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metallurgica Sinica, 2017, 53(8): 918-926. (in Chinese)
    [14] Li Liqun, Qu Jinyu, Wang Xian. Formability and mechanical property of laser metal deposited AlSi10Mg alloy [J]. Surface Technology, 2019, 48(6): 332-337. (in Chinese)
    [15] Ding Ying, Yang Haiou, Bai Jing, et al. Microstructure and mechanical property of AlSi10Mg Alloy prepared by laser solid forming [J]. China Surface Engineering, 2018, 31(4): 46-54. (in Chinese)
    [16] Yuan J, Liang L, Lin G, et al. Reutilization of a reflected laser beam as an effective approach for machining metallic materials with low laser absorptivity [J]. Opt Express, 2019, 27(9): 12048-12060. doi:  10.1364/OE.27.012048
    [17] Biro E, Zhou Y, Weckman D C, et al. The effects of Ni and Au/Ni platings on laser welding of thin sheets [J]. Journal of Laser Applications, 2001, 13(3): 96-104. doi:  10.2351/1.1356420
    [18] Liu Hao, Yu Gang, He Xiuli, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding [J]. Chinese Journal of Lasers, 2013, 40(12): 1203007. (in Chinese) doi:  10.3788/CJL201340.1203007
    [19] Qin Lanyun, Xu Lili, Yang Guang, et al. Correlations of thermal accumulation and melt pool geometry during laser deposition manufacturing of titanium alloy [J]. Rare Metal Materials And Engineering, 2017, 46(9): 2645-2650. (in Chinese)
    [20] Feng Qiuna, Tian Zongjun, Liang Huixin, et al. Reaserch on the influence of heat accumulation of substrate on the morphology of single tracks of the aluminum alloy laser melting deposition [J]. Applied Laser, 2017, 37(1): 51-58. (in Chinese)
    [21] Singh A, Ramakrishnan A, Dinda G Fabrication of Al-11. 2Si components by direct laser metal deposition for automotive applications [J]. Journal of Welding and Joining, 2017, 35(4): 67-73. doi:  10.5781/JWJ.2017.35.4.10
    [22] Grigoriev S N, Tarasova T V, Gvozdeva G O, et al. Solidification behaviour during laser microcladding of Al–Si alloys [J]. Surface and Coatings Technology, 2015, 268: 303-309. doi:  10.1016/j.surfcoat.2014.08.001
    [23] 石世宏, 傅戈雁, 王安军. 激光加工成形制造光内送粉工艺与光内送粉喷头: CN200610116413.1[P]. 2006-09-22.

    Shi Shihong, Fu Geyan, Wang Anjun, et al. Laser processing forming and manufacturing intra-light powder feeding process and optical powder feeding nozzle, CN: 200610116413.1 [P]. 2016-12-01.
    [24] Shi Jianjun, Shi Tuo, Shi Shihong, et al. Process study and optimization of upward cladding by laser inside powder feeding [J]. Infrared and Laser Engineering, 2019, 48(3): 0306005. (in Chinese) doi:  10.3788/IRLA201948.0306005
    [25] Jiang Weiwei, Fu Geyan, Zhang Jiping, et al. Prediction of geometrical shape of coaxial wire feeding cladding in three-beam [J]. Infrared and Laser Engineering, 2020, 49(3): 0305005. (in Chinese) doi:  10.3788/IRLA202049.0305005
    [26] Huang Yanlu, Yang Fuhua, Liang Gongying, et al. Using in-situ technique to determine laser absorptivity of Al-alloys [J]. Chinese Journal of Lasers, 2003(5): 449-453. (in Chinese) doi:  10.3321/j.issn:0258-7025.2003.05.017
    [27] 曹凤国, 胡绛梅, 刘媛, 等. 激光加工[M]. 北京: 化学工业出版社, 2015, 4.

    Cao Fenguo, Hu Jiangmei, Liu Yuan, et al. Laser Processing[M]. Beijing: Chemical Industry Press, 2015: 4. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)  / Tables(2)

Article Metrics

Article views(388) PDF downloads(34) Cited by()

Related
Proportional views

Laser preheating/fluid cooling assisted laser metal deposition of AlSi10Mg

doi: 10.3788/IRLA20200365
  • 1. School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215021, China
  • 2. School of Shagang Iron and Steel, Soochow University, Suzhou 215021, China

Abstract: It is difficult to form aluminum alloy stablely by laser metal deposition(LMD) due to high thermal conductivity, low laser absorptivity, and significant heat accumulation effect. To realize automatic and accurate preheating, eliminating heat accumulation, analyzing the effect of preheating and improving the forming ability of AlSi10Mg aluminum alloy LMD, the technology of laser metal deposition with "internal powder feeding" and Ar supply protection was adopted, the laser preheating and fluid cooling temperature control system was designed and the preheating and cooling temperature control model was established, LMD forming experiments of AlSi10Mg aluminum alloy was carried out, the effects of preheating on laser absorptivity, surface quality, cross-section morphology, temperature field, microstructure and properties of aluminum alloy were systematically analyzed. The results show that the laser preheating and fluid cooling temperature control system can realize accurate preheating and eliminate heat accumulation, obtain a single track with a surface roughness Ra of 2.6 μm. High precision, high efficiency and stable LMD forming of AlSi10Mg overlap, block and thin-wall are realized. Preheating can improve the laser absorptivity, flatten the track and increase the grain size. The assist system and method can effectively solve the problem of insufficient forming stability of aluminum alloy LMD, and provide a new idea and process for forming quality control and molten temperature controlling.

  • 铝合金具有高热导率、高比强度、低密度、可加工性好等优点,已被普遍应用于航空宇航制造、家电装潢、汽车电子等产业[1],其中的Al-Si系铸造铝合金因具有较好的热加工特性而十分适用于铸造、焊接、增材制造等领域[2]。铝合金的增材制造中选区激光熔化(SLM)方面已具备较高的成熟度[3]。而激光金属沉积(Laser Metal Deposition,LMD)铝合金国内外报道相对较少,有待进一步发展且有着重大研究价值,但成形过程中激光吸收率低、热累积大、成形不稳定、性能差异大等缺陷都严重制约其进一步发展。

    现有文献对铝合金激光加工预热作用的相关研究主要在焊接、选区激光熔化领域[4-8],吉林大学李永强[9]等研究了预热温度对铝合金搭接激光焊缝成形与性能的影响,结果显示焊缝的熔深、熔宽随温度的升高而增大,焊缝成形和稳定性变好,组织晶粒粗化(T≤250 ℃)。意大利学者Riccardo Casati[10]采用选区激光熔化方法在冷、热成形平台上制备了AlSi10Mg铝合金,结果显示冷平台铝合金可提高成形件的冷却速度,从而获得最佳的硬度和拉伸性能。热平台导致过饱和Si的含量降低,固溶强化效果减弱且晶粒尺寸增大,从而导致较高的塑性,较低的机械强度。铝合金LMD成形及LMD预热作用的研究多集中于工艺参数优化、裂纹去除、显微组织和力学性能等[11-15]。对于激光吸收率,Yuan[16]提出了利用反射激光提高激光吸收率的方法;加拿大学者E. Biro[17]等采用表面电镀Ni或Au/Ni镀层来增加其铝厚板焊接的激光吸收率。关于激光预热影响铝合金LMD成形激光吸收率的研究还未见报道。

    热累积问题一直以来都是LMD成形过程不可回避的问题,LMD成形过程是一个已成形层不断转变为下一成形层支撑基材的过程。成形过程中会有大量前一层的热量累积到下一层从而影响成形热循环,并造成已成形部分温度不断升高,直至激光热辐射的能量输入与材料热传导、环境热散失之间形成动态热平衡[18]。沈阳航空航天大学钦兰云[19]等研究了LMD成形过程热累积对熔池形貌的影响,采用有限元软件对成形温度场进行了模拟,得到熔池温度与熔池形貌的变化规律。南京航空航天大学冯秋娜[20]等人在6061铝合金表面进行了AlSi10Mg铝合金LMD成形,引入了热累积因子XR研究热累积对熔道形貌的影响。另外,已有学者[21-22]进行LMD成形铝合金薄壁结构件的实验研究,得到了不同质量的成形件。

    现有关于LMD预热的研究多采用外热源加热方式,操作繁琐,功能有限,对于大型固定件的加热困难,不利于实现快速成型与智能化制造,热累积不利影响也没有得到有效解决,难以实现精确高效稳定的铝合金LMD成形。铝合金LMD预热、热累积对激光吸收率与成形影响的研究也寥寥无几。文中针对这一现状,基于LMD实验平台设计激光预热与流体冷却温控系统,建立精确预热流体冷却温控模型,分析预热与热累积对成形的影响,以期实现精确高效稳定高质量的铝合金LMD成形,并为AlSi10Mg铝合金LMD成形与熔池温控提供理论支撑。

    • 实验采用笔者所在课题组自行研发搭建的激光金属沉积系统,系统包括由IPG公司生产的YLS-2000-CT型号光纤激光器(P=2 000 W、λ=1070 nm)、KUKA公司生产的六轴机器人KR60-3F,GTV PF2/2型送粉器组成,以及由课题组自主研发的送气保护式环形光内送粉喷头(原理图如图1所示)[23]与成形工艺。实心圆形激光进入喷头后经由圆锥-圆环反射作用产生环形聚焦激光束,金属粉末由送粉器输送,从环形激光中空位置随保护气与载粉气同轴向下输送形成粉束,激光束与送粉束聚焦相互作用在加工基板平面形成熔池,该喷头结构精巧实现了光、粉、气在熔池处精准耦合相互作用[24-25]

      Figure 1.  Schematic of Ar supply protection hollow beam internal powder feeding deposition nozzle

    • 实验采用ZL101铸造铝合金基板,尺寸为50 mm×66 mm×6 mm,表面经过磨平、喷砂处理并使用丙酮清洗吹干。激光金属沉积铝合金粉末材料选用AlSi10Mg牌号铝合金经旋转电极工艺生产的球形粉末,粉末粒径分布为75~135 μm,借助扫描电子显微镜测得球形AlSi10Mg显微形貌图如图2所示;采用激光粒度仪和扫描电镜附带的EDX能谱仪分别测得AlSi10Mg铝合金粉末的粒径分布和化学成分如表1所示。采用99.99%的纯氩气作为保护气体经防氧化气罩输送(如图1所示)。

      Figure 2.  Micromorphology of AlSi10Mg powder

      ElementAlSiMgFeTiNiMnCuP
      Chemical composition(wt %) Bal. 9.99 0.44 0.43 0.05 0.009 0.0086 0.011 0.0085
      Size/μm D10 D50 D90
      90.23 107.10 134.6
      Apparent density/g·cm−3 1.30

      Table 1.  Chemical composition and particle size distribution of AlSi10Mg alloy powder

    • 文中实验基于送气保护式LMD实验平台,采用激光束辐射作为预热热源,借助自行设计的空气球阀粉末通断控制器(原理如图3所示),使激光沉积过程中粉末输送时间段得以自动控制,以此实现LMD加工前自动控制无粉末输送的激光预热处理。在LMD加工后采用恒温氮气流体热传导冷却的方式,实现LMD加工后残余热量热累积的消除。激光预热与流体冷却辅助温控系统如图3所示,其中激光预热、激光沉积、流体冷却过程的控制原理如表2图4所示。当仅线路1、2接通,激光与保护气同时作用,无送粉状态低功率激光在矩形基板长边上方20 mm处按闭合回形路径在基板中央位置扫描一次进行激光预热处理;当仅线路1、2、4接通,激光、送粉和保护气同时作用,在基板沿X轴正方向进行单道激光金属沉积成形;当仅线路3接通时,基板左上方设有恒温氮气流动散热,消除激光成形后残余热量造成的热累积;在非激光沉积时送粉被系统暂停,可以优化工况消除铝合金粉末尘爆隐患,提高LMD粉末利用率。该系统也为LMD的自动化与智能化提供理论基础。

      Figure 3.  Schematic of auxiliary temperature control system for laser preheating and fluid cooling

      FunctionControl
      1 Laser2 Ar3 Ni4 Powder
      Laser preheatingOnOnOffOff
      Laser depositionOnOnOffOn
      Fluid coolingOffOffOnOff

      Table 2.  Control principles of laser preheating, laser deposition and fluid cooling

      Figure 4.  Temperature control model of preheating and cooling

    • 对于传统的LMD加工研究,往往将熔池的温度控制只与激光功率、扫描速度直接联系,常采用直接监测熔池温度的方式来改变功率与速度从而改变熔池温度。而往往忽略了原始基板或成形件的初始温度、激光吸收率对熔池温度的影响,然而随着初始温度的变化,LMD成形过程的激光吸收率和熔池温度都会变化。目前国内外学者对于能量的产生、激光辐射吸收、成形件温度变化和热量积累的温控模型少有研究。基于激光预热与流体冷却温控系统的功能,可以初步实现LMD成形前后成形件与基板的温控,但要实现温度精确控制,还需建立温度控制模型。图4为激光预热与流体冷却温控模型示意图,分为三个阶段。

      激光预热模型假设:

      (1)不考虑激光传输过程中能量损失,不计LMD短时间成形过程中存在的热量损失;

      (2)加工温度内铸造铝合金热导率达155 W/(m·K),比热容为754 J/(kg·K),试样尺寸小至50 mm×66 mm×6 mm,且比表面积小,3 s内基板即和温度一致,忽略温度监测延迟时间;

      (3)在LMD加工过程中,忽略温度变化产生的激光吸收率变化;

      (4)单道或几道LMD加工产生的沉积部分质量较少而忽略不计;

      (5)粉末飞溅产生的金属颗粒携带逃逸能量忽略不计。

      对于以热辐射形式为主的激光预热能量传输过程,存在如下的能量转换:

      式中:E为激光辐射输入能量;P为激光功率;t为激光辐射时间;β为铝合金激光吸收率。

      式中:${{\Delta T }}$为沉积部分与基板整体温度上升值;T0为初始温度;Ty为激光预热后温度;m为基板总质量;c为铝合金比热容。温度的升高与吸收的能量呈正比关系。

      实验中由于过高的激光功率会短时间产生较多的反射能量,为避免造成沉积喷头损坏而将激光扫描速度、激光功率与基板质量固定为:v=10 mm/s、p=800 W、m=50 g。使用调节激光辐射时间的方法来调节激光辐射能量输入,从而达到精确控制预热温度的目的。对于大质量基板或其他场景的LMD加工状况可根据导热率与基板质量适当对模型做修改。根据公式(1)、(2)得到预热温度Ty为:

      将实验采用的固定参数代入得到温度Ty

      对于激光加工,激光吸收率β常随着激光波长、材料种类、加工温度和表面状态的不同而发生变化,需要测定激光吸收率β以完善模型。流体冷却模型中,能量传输是主要以热传导形式为主LMD残余热量散失的过程。因基板与气流的接触面不稳定,不同部位流速不同,温度差变化较大,从而导致基板与气流之间的热传导速度变化较大,实时变化的能量传递模型难以通过数学公式建立,文中采用实验实际测量的数据经过拟合得到温度随时间下降的变化曲线来建立模型,如图5所示。

      Figure 5.  Temperature curve and fitting equation of sample. (a) Effect of fluid cooling on temperature curve of sample; (b) Fitting of temperature rise section; (c) Fitting of fluid cooling; (d) Fitting of no fluid cooling

      对模型的实验验证与完善:如图6所示,实验采用局部木板夹持处理,起到隔绝基板与其他金属之间的接触式热传导,从而起到了减少额外热传递的效果。在试样背面嵌入一支K型热电偶实时测量基板温度变化,每次激光辐射前都会有5 s以上温度均一化的热传导时间。离焦量为−3 mm,冷却用的室温流动气体的流量为230 L/min,实验及拟合结果如图5所示。经过多次实验计算得到喷砂后基板的吸收率平均值为β=0.326,因此由公式(4)可以得到公式(5)。由图5(a)、(b)可以得到基板温度上升段温度线稳定为一次函数形式,与建立的激光预热模型基本匹配吻合。由图5(a)曲线变化差异对比可以得出流体冷却能够快速有效去除LMD加工后产生的残余热量。两条冷却曲线经过拟合得到如图5(c)、(d)所示结果。如图5(c)所示,此时基板处于快速降温状态,约200 s即可从150 ℃降至室温,表明该方法能够实现热累积的消除。

      Figure 6.  Schematic of in-situ technique determining laser absorptivity

      得到激光预热模型:

      流体冷却模型:

      式中:${{\Delta t_d }}$为流体冷却气流加载时间;td1为初始温度对应的时间点;td2为降温目标温度对应的时间点(可根据公式(7)或图5(c)得到td1td2)。Tyl为流体冷却后温度,td为冷却曲线时间点。因此,根据温控模型,由所需预热温度得到预热激光辐射回形线路时间,再由冷却曲线得到降温时间,从而得到消除热累积效应的时间。

    • 原位法[26]测定激光沉积过程中的激光吸收率原理图如图6所示,试样背面嵌入K型热电偶连接DT-8869H型红外测温仪得到温度变化,安放在一可松紧夹持装置上并设有木块隔热。在激光束辐射试样的过程中,试样吸收部分激光能量而温度升高,这一部分试样吸收能量与激光辐射输出能量的比值即为材料的吸收率,可由公式(8)算得:

      式中:Ta为室温(试样初始温度);t0为激光沉积时间;Tb为沉积结束后的试样温度。激光沉积过程中Ar保护气带走的热量损失暂不计。

    • 实验过程分为三个部分,第一部分为单因素实验,基于激光预热与流体冷却温控系统与预热冷却模型,采用不同的预热温度(25、45、70、95、120、150、200 ℃)进行LMD单道成形实验(激光功率:1400 W,扫描速度:8 mm/s,送粉速率:0.84 g/min,离焦量:−3 mm)。成形过程中采用原位法测定不同预热温度激光吸收率β,采用红外热像仪检测试样温度分布变化以观察温度场变化。第二部分为多道搭接与块体成形实验,基于第一部分实验结果及工艺参数,在LMD成形过程中增加流体冷却降温工艺,并设置无冷却对比实验组。第三部分为薄壁结构件成形。

    • 金属的直流电阻率随温度升高而升高,所以温度对金属材料的激光吸收率有着重要影响,吸收率会随着温度的升高而升高,两者的线性关系如公式(9)[27]

      式中:ρ20为20 ℃时金属的电阻率;γ为电阻率随温度的变化系数;T为温度。公式(9)表明铝合金激光吸收率随温度升高而升高。因此,在激光金属沉积过程中预热作用可有效提高激光吸收率。但是实验测量的结果如图7所示,吸收率β随着预热温度的升高呈先升高后下降,这是由于在LMD加工过程中使用的Ar总流速为62 L/min,对试样有着气流冷却的效果。由图5(c)可知试样温度越高,气流产生的冷却速率越高,冷却速率较低时损失的热量小,吸收率测量值呈现出上升趋势,且上升趋势随温度的升高而逐步放缓。而当冷却速率较高时,损失能量大,吸收率测量值就会受到较大影响而呈现明显下降的趋势,且下降趋势随温度升高而越加陡峭,直至吸收率测量值趋近于零,这说明实验测量值受到LMD保护气冷却效果变化的影响,而产生了失真现象。为克服这一失真现象,实验中熔池瞬时温度受气体冷却效果可忽略不计,故从图8结果可证明实际激光吸收率会随着温度的上升而上升,图8中(a)~(d)的预热温度分别为25、95 、150、200 ℃,LMD熔池温度分别为750、950 、1200、1700 ℃,熔池温度与预热温度的差值呈现随预热温度升高而逐步扩大,且差值呈指数式上升的趋势。因而,AlSi10Mg铝合金LMD成形的激光吸收率随着预热温度的升高而升高。

      Figure 7.  Experimental measurement results of absorptivity β and the temperature difference between molten pool and preheating

      Figure 8.  Infrared thermal image of temperature field distribution of AlSi10Mg aluminium alloy LMD single track with different preheating temperature. (a) 25 ℃; (b) 95 ℃; (c) 150 ℃; (d) 200 ℃

      AlSi10Mg铝合金LMD成形熔池温度场如图8所示,可由其颜色分布观察得到试样温度分布差异。当预热温度为25 ℃时,环形光形成的熔池前部分温度低于后部分,且向外延伸时温度逐步下降。这是由于环形光的特殊光斑形状形成能量分布造成的最终熔池温度分布。预热温度25、95、150、200 ℃时的熔池温度分别约为750、950、 1200、1700 ℃,这是由于激光预热作用提高了试样初始温度并增强了激光吸收率,造成了熔池温度与初始温度的差值呈现随温度升高而逐步扩大的趋势,如图7所示。由图8红外热像图(喷头挡住部分呈上部半圆状暗色区)可以看出预热温度为25 ℃时试样上熔池周围的亮色(黄色)高温温度区的分布范围较小,而随着预热温度的上升,试样亮色高温区域的范围明显扩大,且温度梯度呈减小的趋势。这是由于预热增大了基板的初始温度及导热率使试样总体温度增大温度梯度减小,这有利于降低成形残余应力减少冷裂纹的产生。故预热温度对熔池温度的影响非常大,在同样的加工参数下,控制LMD成形前的温度即可间接控制LMD熔池温度。

    • 由于激光预热处理可增大熔池温度,当送粉速率一定时熔池温度越高流动性越强,马格朗尼对流更加剧烈,从而使得熔道截面更加扁平化。从图9(a)~(e)图10(a)、(b)中可以看出,随着预热温度的升高,熔池截面形状逐渐趋于扁平化,熔道侧面与基板的润湿角也逐渐增大。这有利于增强熔池与基板结合的稳定性。25 ℃预热LMD熔道的中部与底部的晶粒状态如图9(f)、(g)所示,相比于120 ℃预热的晶粒形态明显更加细小。如图11所示,晶粒尺寸值随着预热温度的变化呈现出增大趋势。这是由于高的预热温度使熔池温度升高,凝固过程的过冷度相对减小,从而在成形过程中晶粒形核、长大时间更多,热循环降温曲线也会趋于平缓从而产生更大的晶粒。

      Figure 9.  LMD track cross section and metallography of different preheating temperature. (a) 25 ℃; (b) 45 ℃; (c) 70 ℃; (d) 95 ℃; (e) 120 ℃; (f)-(g) 25 ℃; (h)-(i) 120 ℃

      Figure 10.  LMD track cross section and metallography of high preheating temperature. (a) 150 ℃; (b) 200 ℃

      Figure 11.  Curve of grain size (a), surface roughness Ra and micro-hardness Hv0.1 (b) with preheating temperature

      对熔道上表面进行表面粗糙度测量得到表面粗糙度Ra随预热温度变化曲线如图11所示,可得随着预热温度的升高,熔道表面粗糙度Ra呈现逐渐下降的趋势,这是由于预热温度高导致熔池温度高,粉末熔化的更充分,表面张力更小,润湿效果更好,表面更平滑。测量熔道截面的平均显微硬度得到变化曲线如图11所示,图中显微硬度随着预热温度的升高呈现逐渐下降的趋势,这一变化与图11的晶粒尺寸变化相对应,由于细晶强化作用,通常晶粒越粗大显微硬度越小。由实验过程中的现象可得,预热可降低成形过程的飞溅,提高熔池稳定性,增大温度分布的均匀性,从而减少因应力集中而产生的变形等缺陷。综合分析得到AlSi10Mg铝合金LMD成形合适的预热温度为95~120 ℃,也就是激光预热/流体冷却控温后的目标温度范围。

    • 热累积效应一直以来都是LMD成形过程不可回避的问题,热累积效应会改变每次激光加工前的试样温度,从而改变熔池温度与成形过程热循环,导致成形过程熔池大小形态不稳定,在搭接、块体和薄壁成形过程中产生成形件裂纹、塌陷、熔池增大,应力集中等缺陷。文中对LMD搭接成形采用连续成形对比流体冷却成形,试样截面如图12所示,图中连续搭接成型的熔道截面呈现出逐渐扩大的趋势,越靠后的熔道稀释率越大,截面越高,轮廓线越平滑,这是由于热累积效应造成的,采用流体冷却消除了热累积效应,使得搭接显得平整规则。LMD块体成形设置了无冷却、三道一次冷却和每道冷却三组实验,试样截面图如图13所示,无冷却块体呈现出向右拱起的倾斜截面,这是由于热累积导致熔池升温从而捕获更多的粉末,熔道尺寸逐渐增大。每三道一次冷却的试样呈现出循环增高降低的现象,这是由于每三道一次流体冷却减缓了热累积效应,使熔池温度与捕获粉末量循环性增减。每道冷却的试样实现了热累积效应的消除,从而使熔道平整均匀,尺寸统一,成形质量稳定。

      Figure 12.  Cross section of LMD overlap sample. (a) Overlap sample without cooling; (b) Overlap sample of fluid cooling

      Figure 13.  Cross section of sample of LMD block. (a) Sample without cooling; (b) Sample of cooling every 3 tracks; (c) Sample of assisted cooling forming

      采用激光预热与流体冷却温控系统进行LMD薄壁结构件成形,得到薄壁件的成形效果如图14所示,薄壁件壁厚为2.6 mm,外形平整,表面光洁度高,无塌陷、变形和熔池增大等缺陷。

      Figure 14.  LMD thin-wall sample. (a) Sample of without cooling; (b) Sample of assisted cooling forming; (c) Sample of some thin-wall parts

    • (1) 设计了LMD成形激光预热与流体冷却温控系统,通过建立预热冷却温控模型可有效控制LMD成形的初始温度,实现激光精确预热,消除LMD残余热量。在25~200 ℃预热时,随预温度升高,激光吸收率逐渐升高,熔池温度呈指数式上升。

      (2) 激光预热会使AlSi10Mg铝合金LMD成形熔道宽度增大,高度略有减小。在25~200 ℃预热时,随温度升高,熔道宽度缓慢增加并趋于稳定,熔道表面粗糙度逐渐降低,组织晶粒尺寸逐渐增大,显微硬度逐渐降低,单熔道成形的最佳预热温度为95~120 ℃,Ra可达2.6 μm,成形组织显微硬度约为83~95 Hv0.1

      (3) 流体冷却可有效消除AlSi10Mg铝合金LMD成形的热累积效应,通过调控试样热循环有效优化LMD搭接、块体的截面形貌与成形质量,尤其能够有效提升AlSi10Mg薄壁件的LMD成形能力,并显著提高粉末利用率,成形效率、质量和稳定性。

Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return