Volume 50 Issue 7
Jul.  2021
Turn off MathJax
Article Contents

Wang Lisha, Sun Songsong, Yan Wei, Qu Jiaojiao, Wang Yong. L-band switchable dual-wavelength, high-energy pulsed fiber laser[J]. Infrared and Laser Engineering, 2021, 50(7): 20200370. doi: 10.3788/IRLA20200370
Citation: Wang Lisha, Sun Songsong, Yan Wei, Qu Jiaojiao, Wang Yong. L-band switchable dual-wavelength, high-energy pulsed fiber laser[J]. Infrared and Laser Engineering, 2021, 50(7): 20200370. doi: 10.3788/IRLA20200370

L-band switchable dual-wavelength, high-energy pulsed fiber laser

doi: 10.3788/IRLA20200370
  • Received Date: 2020-09-20
  • Rev Recd Date: 2020-12-01
  • Available Online: 2021-07-23
  • Publish Date: 2021-07-25
  • An L-band switchable dual-wavelength, frequency stabilized, high energy, single frequency, single mode linearly polarized, pulsed laser based on a master osocillator power amplifier (MOPA) configuration was reported. It could be used as the emission source of detecting atmospheric CO2 LIDAR system. This pulsed fiber laser system was mainly composed of two single frequency narrow linewidth external cavity semiconductor lasers, pulse modulation system, and multi-stage fiber amplifiers. The wavelengths of 1572.018 nm and 1572.480 nm could be switched freely by controlling a magneto-optical switch. Using the closed loop temperature control technology, the locked central frequency and output optical power were implemented. The on-off extinction ratio of 80 dB was achieved by using digital and analog acousto-optic modulators in series. The Stimulated Brillouin Scattering (SBS) threshold was increased by applying non-uniform stress to the fiber. With a common commercial gain fiber and commercial polarization maintaining components, an average output power of 1.5 W, pulse width of 309 ns, the peak power of 485 W, pulse energy of 150 μJ and signal to noise ratio of 25 dB were generated at a repetition rate of 10 kHz and the wavelength of 1572 nm. The power consumption of the whole laser system which used air cooling was less than 60 W.
  • [1] Shi Wei, Fang Qiang, Li Jinhui, et al. High-performance fiber lasers for LIDARs [J]. Infrared and Laser Engineering, 2017, 46(8): 0802001. (in Chinese) doi:  10.3788/IRLA201746.0802001
    [2] Hu Yang, Zhu Heyuan. 1.55 μm all-fiber coherent Doppler lidar for wind measurement [J]. Infrared and Laser Engineering, 2016, 45(S1): 71-75. (in Chinese)
    [3] Ma Xuanxuan, Lu Baole, Wang Kaile, et al. Tunable broadband single-frequency narrow-linewidth fiber laser [J]. Acta Optica Sinica, 2019, 39(1): 0114001. (in Chinese) doi:  10.3788/AOS201939.0114001
    [4] Wu Jun, Wang Xianhua, Fang Yonghua, et al. Abilitiy analysis of spatial heterodyne spectrometer in atmospheric CO2 detection [J]. Acta Optica Sinica, 2011, 31(1): 0101001. (in Chinese)
    [5] Jia Xiujie, Guo Zhancheng, Fu Shenggui, et al. Experimental investigation on co-doped double-clad high-power fiber laser in L-band [J]. Optics and Precision Engineering, 2006, 14(3): 341-345. (in Chinese) doi:  10.3321/j.issn:1004-924X.2006.03.001
    [6] Canat G, Renard W, Lucas E, et al. Eyesafe high peak power pulsed fiber lasers limited by fiber nonlinearity [J]. Optical Fiber Technology, 2014, 20(6): 678-687. doi:  10.1016/j.yofte.2014.06.010
    [7] Zhang Liming, Yan Chuping, Feng Jinjun, et al. 180 W single frequency all fiber laser [J]. Infrared and Laser Engineering, 2018, 47(11): 1105001. (in Chinese) doi:  10.3788/IRLA201847.1105001
    [8] Zhang Xin, Liu Yuan, He Yan, et al. Characteristics of eye-safe high repetition frequency narrow pulse width single mode all fiber laser [J]. Infrared and Laser Engineering, 2015, 44(4): 1105-1109. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.04.001
    [9] Renard W, Robin T, Cadier B, et al. High peak power single-frequency efficient erbium-ytterbium doped LMA fiber[C]//Conference on Lasers and ElectroOptics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (Optical Society of America, 2015: STh4L. 6.
    [10] Teodoro F D, Desmoulins S. High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mJ-energy pulses [J]. Optics Express, 2008, 16(4): 2431-2437. doi:  10.1364/OE.16.002431
    [11] Lee W, Geng J, Jiang S, et al. 1.8 mJ, 3.5 kW single-frequency optical pulses at 1572 nm generated from an all-fiber MOPA system [J]. Optics Letters, 2018, 43(10): 2264. doi:  10.1364/OL.43.002264
    [12] Khitrov V, Shkunov V V, Rockwell D A, et al. Er-doped high-aspect-ratio core rectangular fiber producing 5 mJ, 13 ns pulses at 1572 nm [J]. Optics Letters, 2012, 37(19): 3963-3965. doi:  10.1364/OL.37.003963
    [13] Lim E L, Alam S U, Richardson D J. High-energy, in-band pumped erbium doped fiber amplifiers [J]. Optics Express, 2012, 20(17): 18803-18818. doi:  10.1364/OE.20.018803
    [14] Nicholson J W, Desantolo A, Yan M F, et al. High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier [J]. Optics Express, 2016, 24(17): 19961-19968. doi:  10.1364/OE.24.019961
    [15] Yu A W, Abshire J B, Storm M, et al. Laser amplifier development for IPDA Lidar measurements of CO2 from space[C]//Proceedings of Spie the International Society for Optical Engineering, 2015: 9342.
    [16] Chen Yue'e, Wang Yong. Ultralow-noise tunable single-frequency fiber lasers [J]. Optics and Precision Engineering, 2013, 21(5): 1110-1115. (in Chinese) doi:  10.3788/OPE.20132105.1110
    [17] Boggio J M C, Marconi J D, Fragnito H L. Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions [J]. Journal of Lightwave Technology, 2005, 23(11): 3808-3814. doi:  10.1109/JLT.2005.856226
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(1)

Article Metrics

Article views(511) PDF downloads(46) Cited by()

Related
Proportional views

L-band switchable dual-wavelength, high-energy pulsed fiber laser

doi: 10.3788/IRLA20200370
  • Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China

Abstract: An L-band switchable dual-wavelength, frequency stabilized, high energy, single frequency, single mode linearly polarized, pulsed laser based on a master osocillator power amplifier (MOPA) configuration was reported. It could be used as the emission source of detecting atmospheric CO2 LIDAR system. This pulsed fiber laser system was mainly composed of two single frequency narrow linewidth external cavity semiconductor lasers, pulse modulation system, and multi-stage fiber amplifiers. The wavelengths of 1572.018 nm and 1572.480 nm could be switched freely by controlling a magneto-optical switch. Using the closed loop temperature control technology, the locked central frequency and output optical power were implemented. The on-off extinction ratio of 80 dB was achieved by using digital and analog acousto-optic modulators in series. The Stimulated Brillouin Scattering (SBS) threshold was increased by applying non-uniform stress to the fiber. With a common commercial gain fiber and commercial polarization maintaining components, an average output power of 1.5 W, pulse width of 309 ns, the peak power of 485 W, pulse energy of 150 μJ and signal to noise ratio of 25 dB were generated at a repetition rate of 10 kHz and the wavelength of 1572 nm. The power consumption of the whole laser system which used air cooling was less than 60 W.

    • 单频光纤激光器以其稳定性好、噪声低、相干性好等优点,在相干探测、光通信、光纤传感、激光雷达等领域有重要的战略需求和广泛的应用前景[1-4]。基于线宽为kHz量级,脉冲宽度为100~500 ns的单频窄线宽1572 nm波段光纤激光器的激光雷达系统在大气CO2遥感探测中具有重要的应用价值。因此,L波段单频窄线宽脉冲光纤激光器引起了国内外众多研究学者的广泛关注[5]

      多波长脉冲激光器可以产生多个L波段波长的脉冲光,相比于使用多台发射不同波长的脉冲光纤激光器,其成本更低,且使用更加便捷。通过在系统中加入磁光开关,可实现多波长间的快速切换。在激光雷达的应用领域中,有很多关于15xx nm波长范围内的掺铒光纤高能量、窄线宽单频脉冲激光的报道[6-8]。但大部分的工作波长都是靠近1550 nm,对于CO2的探测来讲,波长太短[9-10]。有很多研究学者报道了基于特殊光纤高能量、高峰值功率的1572 nm脉冲光纤激光器[11-15],但这对于商业化的实现还存在着一定的差距。基于石英玻璃的商用光纤在L波段的增益较低,需要较长的增益光纤长度,而对于窄线宽脉冲放大器,过长的光纤会引起光学非线性效应和带外放大自发辐射(Amplifier Spontaneous Emission, ASE)。因此对于L波段的高能量脉冲光纤激光器设计,不仅要对每一放大级的光学结构进行优化,同时还要考虑光纤中非线性效应的抑制情况。总体而言,利用商用石英玻璃光纤实现高峰值功率、窄线宽、双波长可切换的L波段脉冲光纤激光器技术仍需要开展深入研究。

      文中报道了一种基于普通商用光纤MOPA结构的L波段可切换双波长高能量窄线宽脉冲光纤激光器,整个系统所涉及的光纤及元器件均为商业化产品。该激光器由两个高稳定性的种子源、连续光预放大器、脉冲调制系统和三级级联放大器组成。在重复频率为10 kHz时获得了150 μJ的单脉冲能量,最高输出峰值功率485 W,脉冲宽度为309 ns,偏振消光比大于20 dB,通断消光比大于80 dB。通过控制磁光开关,脉冲光纤激光器可以进行多波长切换,并通过闭环温度控制技术实现输出波长和功率锁定。这种全光纤激光系统具有结构紧凑、成本低、稳定性好、信噪比高等优点,非常适合用作CO2遥感探测的激光发射光源。

      Figure 8.  Physical drawing of laser

    • 图1为L波段可切换双波长高能量窄线宽脉冲光纤激光器结构示意图。该实验装置可分为四大部分:双种子源(seed)、预放大器、同源双路声光调制器、功率放大器,所涉及的元件全部为保偏器件。采用中心波长为1572.018 nm,功率14 mW,线宽5 kHz和中心波长为1572.480 nm,功率15 mW,线宽5 kHz的外腔稳频半导体激光器(External Cavity Semiconductor Laser, ECSL)作为种子源,偏振消光比均大于24 dB。两路种子光分别经过带有不同比例的双端Tap隔离器(Isolator, ISO)进入后续光路系统,以防止相邻放大级的后向散射光损伤种子激光器。输出端Tap作为激光雷达外差探测激光光源。两路输入端Tap通过2×1耦合器(Coupler)进入锁频器件,如图2所示,通过功率检测模块、信号处理单元、微控制器单元和电流/温度驱动器组成的闭环系统控制种子激光器。种子激光器的输出功率和波长由驱动电流和温度同时反馈控制。基于同步的模拟和数字PID控制技术[16],电流和温度的控制精度分别为1 ppb和0.002 ℃,使得相对强度噪声(Relative Intensity Noise,RIN)低于−140 dBc/Hz,在1 Hz条件下的相位噪声小于10 μrad/sqrt(Hz)/m OPD。该种子激光器的输出功率长期稳定性优于1%。边模抑制比(side-mode suppression ratio, SMSR)大于63 dB。用延迟自外差法测得的洛伦兹线宽约为5 kHz,如图3所示。

      Figure 1.  Schematic of the MOPA system

      Figure 2.  Closed loop control system of seed laser

      Figure 3.  Seed laser linewidth measurement

      两路输出光可通过磁光开关切换,然后进入连续光预放大器。976 nm单模泵浦光经过PM 980/1550波分复用器(Wavelength Division Multiplexing,WDM)进入掺铒光纤(EDF; PM 7/125; Nufern)中。被放大后的连续光经过模拟的声光调制器(Acoustic Optical Modulator, AOMⅠ)调制后,转换成脉冲信号。通过AOM的驱动信号来改变脉冲的宽度和重复频率以满足激光雷达的脉冲信号要求,脉冲的可调谐重复频率范围为1 kHz~1 MHz,可调谐脉冲宽度范围为100~500 ns[10]。调制后的脉冲光信号经过三级脉冲全光纤放大器,每一级放大器的后面都接入了带有Tap端的隔离器,用来消除后向ASE和后向散射光对前一级的影响。第一级脉冲放大器采用掺铒的保偏光纤(EDF PM 7/125 Nufern)作为增益介质,976 nm单模泵通过WDM注入到增益光纤中。随后,脉冲光又通过数字声光调制器(AOMⅡ)的调制,实现了通断消光比>80 dB,信噪比(signal noise ratio, SNR)>50 dB的高性能指标;第二级脉冲放大器采用双包层铒镱共掺的保偏光纤(EYDF PM 12/130 Nufern)作为增益介质,940 nm多模泵通过(2+1)×1泵浦合束器注入到掺杂光纤中,掺杂光纤与隔离器的熔接点处涂有高折射率的银胶,用来去除未被吸收的泵浦光。最后一级脉冲放大器采用芯径25 μm,长度为2 m的大模场铒镱共掺光纤作为增益介质,激光器最终输出的单脉冲能量高达150 μJ。

    • 图4所示,通过对模拟AOMⅠ使用对称三角波形调制,最终输出一个脉冲宽度为309 ns的高斯脉冲。通过改变声光调制器的驱动信号亦可输出平顶脉冲。由图4中可以看出,高斯脉冲顶部平缓光滑,无明显的受激布里渊散射(SBS)出现。布里渊散射是光和传播光的介质之间的相互作用,当入射光功率达到一定值时,大部分的功率会被散射回来。通过在光纤上施加不均匀的梯度应力,影响布里渊的增益谱线,产生不同的布里渊频移,从而提高受激布里渊散射阈值,抑制放大器中的SBS[17]。如图5所示,将设计的应变梯度应用于Er/Yb共掺商用PM 25/300光纤中,光纤的起始段和末端段设计为无应变,以便于和其它光纤熔接,使用一个直径为100 mm的带有凹槽的金属圆盘来缠绕PM 25/300增益光纤,以获得更好的光束质量和热耗散。

      Figure 4.  A typical 309 ns Gaussian pulse with AOM modulation signal (the inset)

      Figure 5.  Schematic diagram of longitudinal gradient strain distribution on gain fiber

      激光功率指标主要受SBS效应的影响,SBS阈值的简化公式如下:

      式中:Aeff为光学有效模面积;gB为SBS增益系数;Leff为有效光纤长度;α为吸收系数。在确定光纤种类的条件下,为了提高SBS阈值,应尽可能地缩短各器件的光纤长度以减小Leff的值。如图6所示,输出功率随泵浦电流的增加近似线性变化,在重频10 kHz条件下,最大平均输出功率高达1.6 W。整个系统电功耗小于60 W。

      Figure 6.  Output power vs pump current

      利用日本横河AQ6370D光谱分析仪对放大系统产生的激光光谱特性进行分析。输出脉冲光谱如图7所示,信噪比大于25 dB。如果加入窄带滤波器,信噪比可大于40 dB。

      Figure 7.  Optical spectrum of the output pulse

      L波段可切换双波长高能量窄线宽脉冲光纤激光器基本参数如表 1所示。整机效果如图8所示,激光器运行过程中底部应加入相同规格尺寸的散热尺以避免因热效应引起的系统性能的变化。

      ParameterTest
      Center wavelength/nm 1572.018 &1572.48
      Wavelength accuracy/pm ±2
      Repetition frequency/kHz 10
      Pulse width/ns 309
      SNR/dB >25
      Pulse energy/uJ >150
      Peak power/W >485
      Energy stability <5%
      AOM extinction ratio/dB >80
      AOM frequency shift/MHz >80
      Polarization extinction ratio/dB >20
      Beam quality <1.5
      Power consumption/W <60
      Case size/mm3 387×340×81
      Cooling method Air

      Table 1.  Specification of pulsed fiber laser

    • 文中通过合理的MOPA结构设计克服了EYDF在L波段的低增益问题,并沿PM 25/300增益光纤施加非均匀梯度应力有效地抑制了高能量单频激光放大时带来的SBS效应,从而提升了激光器的性能指标。通过控制磁光开关,实现了1572.018 nm和1572.480 nm双波长切换;采用闭环温度控制技术,实现了种子激光器的频率和功率锁定;采用两个声光调制器串联的方式,得到了高达80 dB的通断消光比;整个系统采用商用掺杂光纤和保偏器件,获得了一种稳定的单频、高能量、保偏、低噪声、重复频率可调、脉冲形状可编辑、L波段可切换双波长的光纤激光器,是CO2相干遥感测量的理想光源选择。相信在不久的将来,随着放大器系统的进一步完善和改进,将会推出结构紧凑的毫焦量级的单频窄线宽脉冲光纤激光系统,可有效地增加探测距离。

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return