Liu Hongming, Liu Yujuan, Song Ying, Zhong Zhicheng, Kong Lingsheng, Liu Huaibin. Principle and optimum analysis of small near-infrared spectrometers based on digital micromirror device[J]. Infrared and Laser Engineering, 2021, 50(2): 20200427. DOI: 10.3788/IRLA20200427
Citation: Liu Hongming, Liu Yujuan, Song Ying, Zhong Zhicheng, Kong Lingsheng, Liu Huaibin. Principle and optimum analysis of small near-infrared spectrometers based on digital micromirror device[J]. Infrared and Laser Engineering, 2021, 50(2): 20200427. DOI: 10.3788/IRLA20200427

Principle and optimum analysis of small near-infrared spectrometers based on digital micromirror device

  • The DMD small near-infrared spectroscopy instrument is widely used in chemical composition analysis and quality inspection for its advantages of fast detection speed, high sensitivity, no damage detection, and miniaturization of portable instruments. However, as the premise of instrument design, optical optimization design of the whole spectral range is the hard work of the system. In this paper, the theoretical design method of the spectroscopic imaging system based on the small near-infrared spectrometer of DMD was studied. The method was designed by using the double-dispensing anti-aberration lens and combining the geometric aberration theory to optimize the design of a small DMD near-infrared spectrometer to reduce the aberration of the entire system. Then, the optical simulation software was used to align the direct imaging system for optical simulation. And ultimately achieve the design simulation requirements. Simulation results indicate that the whole size of the spectrometer is less than 150 mm×150 mm×150 mm, and the resolution is better than 15 nm in the range of 1000-1700 nm in the working band. Therefore, the proposed method can meet the design requirements and has broad application prospects in practical applications.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return