Volume 50 Issue 7
Jul.  2021
Turn off MathJax
Article Contents

Geng Rui, Zhao Kang, Chen Qingshan. Long-distance recognition of infrared quantum dot materials[J]. Infrared and Laser Engineering, 2021, 50(7): 20200436. doi: 10.3788/IRLA20200436
Citation: Geng Rui, Zhao Kang, Chen Qingshan. Long-distance recognition of infrared quantum dot materials[J]. Infrared and Laser Engineering, 2021, 50(7): 20200436. doi: 10.3788/IRLA20200436

Long-distance recognition of infrared quantum dot materials

doi: 10.3788/IRLA20200436
  • Received Date: 2020-12-15
  • Rev Recd Date: 2021-01-20
  • Publish Date: 2021-07-25
  • Quantum dots are widely used in laser energy, photoelectric detection and other fields due to its unique photoelectric properties. Its size-dependent stimulated emission and flexible application form also make it an ideal fluorescent labeling material, which has attracted much attention in the fields of biomedicine, micromaterial detection, anti-counterfeiting and target recognition. In the field of anti-counterfeiting and target recognition where the application scenes are mostly macro natural environments, it is inevitable to detect and analyze the infrared fluorescence of quantum dots at a relatively long distance. Therefore, a long-distance detection system of infrared fluorescence for quantum dot was established based on weak signal detection technology and used to detect the fluorescence of PbS colloidal quantum dot films. The effective detection range of the fluorescence at 1300 nm for the samples was over 100-200 meters and may increase further. This meant that long-distance recognition of infrared quantum dot materials was realized. The detection results can be used to analyze and guide the preparation process of different infrared quantum dot materials, which will also promote the diversified development of their remote recognition applications.
  • [1] Cheng Cheng, Jiang Huilv. Research progress of CdSe/ZnS and PbSe-quantum-dot fibers and fiber amplifiers [J]. Infrared and Laser Engineering, 2011, 40(10): 1873-1880. (in Chinese)
    [2] Wang Zihao, Fanto Michael L, Steidle Jeffrey A, et al. Passively mode-locked InAs quantum dot lasers on a silicon substrate by Pd-GaAs wafer bonding [J]. Applied Physics Letters, 2017, 110(14): 141110.
    [3] Tang Jing, Sargent Edward H. Infrared colloidal quantum dots for photovoltaics: Fundamentals and recent progress [J]. Advanced Materials, 2011, 23(1): 12-29. doi:  10.1002/adma.201001491
    [4] Chen Qian, Gao Fangfang, Wang Huan, et al. Synthesis and characterization of PbS quantum dots sensitized sensitized titanium dioxide nanotubes solar cells [J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1169-1172.
    [5] Song Xiaoxian, Zhang Yating, Zhang Haiting, et al. Graphene and PbS quantum dot hybrid vertical phototransistor [J]. Nanotechnology, 2017, 28(14): 145201. doi:  10.1088/1361-6528/aa5faf
    [6] Yang Qi, Shen Jun, Wei Xingzhan, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors [J]. Infrared and Laser Engineering, 2020, 49(1): 0103003. (in Chinese) doi:  0103003
    [7] Zhao Shuangyi, Wang Yue, Huang Wen, et al. Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity [J]. Science China Materials, 2019, 62(10): 1470-1478.
    [8] Wijaya Hadhi, Darwan Daryl, Zhao Xiaofei, et al. Efficient near-infrared light-emitting diodes based on ln(Zn)As-ln(Zn)P-CaP-ZnS quantum dots [J]. Advanced Functional Materials, 2020, 30(4): 1906483.
    [9] Medintz Igorl, Uyeda H Tetsuo, Goldman Ellen R. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nature Materials, 2005, 4: 435-446.
    [10] Chen Yongfen, Rosenzweig Zeev. Luminescent CdS quantum dots as selective ion probes [J]. Analytical Chemistry, 2002, 74(19): 5132-5138. doi:  10.1021/ac0258251
    [11] You J Q, Yan D, He Y, et al. Polyethyleneimine-protected Ag2S quantum dots for near-infrared fluorescence-enhanced detection of trace-level Hg2+ in water [J]. Journal of Water Chemistry and Technology, 2020, 42(1): 36-44. doi:  10.3103/S1063455X20010105
    [12] Xing Xiaoxue,Wang Xianwei, Qin Hongwu, et al. CH4 detection based on near-infrared luminescence of PbSe quantum dots [J]. Chinese Optics, 2018, 11(4): 662-668. (in Chinese)
    [13] Yu Zhuangzhuang, Kang Tianfang, Lu Liping. An electro-chemical molecularly imprinted sensor for tetracycline based on gold nanoparticles and graphene quantum dots [J]. Journal of Instrumental Analysis, 2020, 39(2): 182-189. (in Chinese)
    [14] Zeng Yunlong, Zhao Min, Zhang Min, et al. A novel near-infrared fluorescence aptasensor assay for ochratoxin A in traditional chinese medicine [J]. Chinese Journal of Luminescence, 2019, 40(1): 115-121. (in Chinese)
    [15] Rahul S Tade, Pravin O Patil. Green synthesis of fluorescent graphene quantum dots and its application in selective curcumin detection [J]. Current Applied Physics, 2020, 20(11): 1226-1236. doi:  10.1016/j.cap.2020.08.006
    [16] Li Wenshuai, Huang Saipeng, Wen Huiyun et al. Fluorescent recognition and selective detection of nitrite ions with carbon quantum dots [J]. Analytical and Bioanalytical Chemistry, 2020, 412(4): 993-1002. doi:  10.1007/s00216-019-02325-9
    [17] Zhang Dan, Yu Jinhai, Li Dongze, et al. Preparation of high quality Ag2S quantum dots with near-infrared emission and their applications in bioimaging [J]. Chemical Journal of Chinese Universities, 2018, 39(4): 623-628. (in Chinese)
    [18] Zhang Yan, Wei Yong, Dai Yiwen, et al. Targeted labeling and biological toxicity of Zn3In2S6-CEA quantum dot fluorescent probe to colon cancer cell line SW480 [J]. Chinese Journal of Cancer Prevention and Treatment, 2018, 25(9): 615-621. (in Chinese)
    [19] Wang Juncheng, Yang Feifei, Gao Guanbin, et al. Ag doped HgS quantum dots: a pH-tunable near-infrared-II fluorescent nanoprobe [J]. Journal of Inorganic Materials, 2019, 34(11): 1156-1160. (in Chinese)
    [20] Kalkal Ashish, Pradhan Rangadhar, Kadian Sachin, et al. Biofunctionalized graphene quantum dots based fluorescent biosensor towards efficient detection of small cell lung cancer [J]. ACS Applied Bio Materials, 2020, 3(8): 4922-4932. doi:  10.1021/acsabm.0c00427
    [21] Sarkar Suresh, Le Phuong, Geng Junlong, et al. Short-wave infrared quantum dots with compact sizes as molecular probes for fluorescence microscopy [J]. Journal of the American Chemical Society, 2020, 142(7): 3449-3462. doi:  10.1021/jacs.9b11567
    [22] Morgan Nicole Y, English Sean, Chen Wei, et al. Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots [J]. Academic Radiology, 2005, 12(3): 313-323. doi:  10.1016/j.acra.2004.04.023
    [23] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science, 2005, 307(5709): 538-544. doi:  10.1126/science.1104274
    [24] Yao Jun, Li Pingfan, Li Lin, et al. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy [J]. Acta Biomaterialia, 2018, 74: 36-55. doi:  10.1016/j.actbio.2018.05.004
    [25] Cai Xiaoli, Luo Yanan, Zhang Weiying, et al. pH-Sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery [J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22442-22450.
    [26] Fakayode Olayemi J, Tsolekile Ncediwe, Songca Sandile P, et al. Applications of functionalized nanomaterials in photo-dynamic therapy [J]. Biophysical Reviews, 2018, 10: 49-67. doi:  10.1007/s12551-017-0383-2
    [27] Tong Liying, Fu Hao, Jia Zhijian, et al. Quantitative detection of dual miRNAs based on enzyme-sheared quantum dot fluorescence amplification [J]. Acta Photonica Sinica, 2020, 49(5): 0516001. (in Chinese)
    [28] Mohamed Abdel-Salam, Basma Omran, Kathryn Whitehead, et al. Superior properties and biomedical applications of microorganism-derived fluorescent quantum dots [J]. Molecules, 2020, 25(19): 4486. doi:  10.3390/molecules25194486
    [29] Xu Bo, Qian Zhiyu. Research of anti-counterfeiting technology based on near-infrared fluorescent quantum dots [J]. Computer Measurement & Control, 2010, 18(4): 878-880. (in Chinese)
    [30] Yan Lei, Yu Yanlin. Microwave-assisted synthesis of S, N-codoped carbon dots with strong emission and application as anti-counterfeit ink [J]. Journal of Criminal Investigation Police University of China, 2018(6): 112-116. (in Chinese)
    [31] Liu Yanhong, Wang Na, Yu Xiaoqi, et al. Preparation and performance analysis of invisible fluorescent ink based on carbon dots [J]. Research and Exploration in Laboratory, 2020, 39(8): 1-4, 33. (in Chinese)
    [32] Geng Rui, Zhang Yujiang, Chen Qingshan. Research on photoluminescence characteristics of infrared PbX quantum dots [J]. Infrared Technology, 2017, 39(2): 125-129, 135. (in Chinese)
    [33] Cheng Cheng, Li Jiejie. Experimental measurement and determination of photoluminescence lifetime of PbS quantum dots [J]. Acta Optica Sinica, 2017, 37(1): 0130001. (in Chinese) doi:  10.3788/AOS201737.0130001
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(515) PDF downloads(84) Cited by()

Related
Proportional views

Long-distance recognition of infrared quantum dot materials

doi: 10.3788/IRLA20200436
  • School of Instrument Science and Optoelectronics Engineering, Beijing Information Science & Technology University, Beijing 100192, China

Abstract: Quantum dots are widely used in laser energy, photoelectric detection and other fields due to its unique photoelectric properties. Its size-dependent stimulated emission and flexible application form also make it an ideal fluorescent labeling material, which has attracted much attention in the fields of biomedicine, micromaterial detection, anti-counterfeiting and target recognition. In the field of anti-counterfeiting and target recognition where the application scenes are mostly macro natural environments, it is inevitable to detect and analyze the infrared fluorescence of quantum dots at a relatively long distance. Therefore, a long-distance detection system of infrared fluorescence for quantum dot was established based on weak signal detection technology and used to detect the fluorescence of PbS colloidal quantum dot films. The effective detection range of the fluorescence at 1300 nm for the samples was over 100-200 meters and may increase further. This meant that long-distance recognition of infrared quantum dot materials was realized. The detection results can be used to analyze and guide the preparation process of different infrared quantum dot materials, which will also promote the diversified development of their remote recognition applications.

    • 半导体量子点是准零维的纳米材料,量子限域效应使其具有类分子的分立能级,因此显现出许多独特的光学与电学性质,在光伏电池、光电检测以及能源与照明等领域得到了广泛的应用[1-8]。量子点受激后可以发射荧光,荧光波长由材料和尺寸控制[9];其荧光稳定性好、寿命长、量子产率高,是一种理想的无机荧光标记材料,在物质检测、生物医学以及防伪与目标识别等领域引起各国研究者的普遍重视。

      量子点用于环境物质的检测与定量分析,主要是利用其光学性质对表面状态极为敏感的特点而将量子点作为离子或分子荧光探针。2002年,Chen等[10]首次提出通过向量子点荧光探针溶液中加入不同种类以及不同浓度的金属离子,使其荧光发生淬灭或增强,从而实现金属离子的检测。在其之后,人们利用量子点荧光探针开发了更多金属离子以及其他分子等微观物质的有效检测手段[11-16]。量子点在生物医学领域的广泛应用,则得益于其较宽的激发光谱与狭窄对称的发射光谱,这使得单一光源就可以迅速激发不同尺寸的量子点粒子,得到可分辨的窄发射谱峰,且没有有机荧光团发射峰所存在的显著拖尾,因此更易于被辨识。此外,量子点的荧光强度和稳定性是有机荧光染料的20~100倍,其抗淬灭反应与光化学稳定性使其成为适于长期跟踪研究关键生命过程的强有力的标记工具。特别是近红外量子点,辐射荧光波长处于生物组织吸收更低的近红外波段,与可见光量子点相比更能穿透目标组织,对深层组织和器官的检测具有更高的灵敏度和对比度。因此,红外量子点荧光在生物组织成像与荧光标记[17-21]、活体成像[22-23]、药物输送和肿瘤靶向治疗[24-25]、微生物标记与追踪[26]以及RNA检测[27-28] 等方面都得到了长足的发展。

      与量子点在生物医学领域的应用类似,防伪与目标识别技术中也可以通过检测量子点激发态的荧光辐射来实现对待测目标或伪装信息的识别。区别是,后者的应用场景多发生于宏观环境当中,往往需要对量子点受到激发后发出的频率转换荧光进行远场甚至较远距离的检测与分析。同时,由于应用环境受自然干扰更为严重,因此,相比于可见光,不可见的红外波段更具优势。2010年,徐波等就曾提出利用荧光发射峰为647 nm和750 nm的两种近红外荧光量子点的发射光谱通过特定的编码法则实现防伪[29]。然而随后多年,量子点防伪与目标识别技术的发展仍多集中于掺杂可见光量子点的隐形荧光墨水的研制[30- 31],因此亟需研究红外量子点荧光的宏观远距离探测技术,实现对其荧光特性的远距离分析,这将极大地推动红外量子点材料在防伪与目标识别等非生物应用领域的进一步发展。

      鉴于此,文中采用微弱信号检测的方法,基于光电检测技术设计并构建系统,对红外胶质量子点荧光传输较远距离后的微弱光信号进行光学采集、光电转换以及放大滤波等处理,完成对其荧光能量的有效提取,进而实现红外量子点材料的远距离识别与特性分析。

    • 前期研究表明[32],量子点三种相互竞争的荧光产生途径中,电子和空穴直接有效复合产生的激子态发光能够满足波长随量子点尺寸的减小而蓝移,且尺寸越小,蓝移幅度越大,是目标识别与检测应用中需要着重保持和增强的一种发光机制。PbS、PbSe等Pb族半导体材料发射波长在近红外波段,且有效质量和禁带宽度更小、介电常数和玻尔半径更大,因此,具有更明显的尺寸限域效应,其量子点的荧光性能更为优异。

      以PbS量子点为例,其不同尺寸量子点(1~9号样品粒径范围2.35~5.61 nm,依次增大)的吸收谱和发射谱如图1所示[33]。图中有明显的激子吸收峰和发射峰,且可以看出PbS量子点吸收光谱与发射光谱的强尺寸依赖性。若在应用中根据波长需求调整制备过程,可以很容易地通过尺寸调谐的手段实现检测识别的多样化。

      Figure 1.  Absorption (a) and emission (b) spectra of PbS quantum dots in different sizes

    • 依据上述分析,基于微弱信号检测的基本原理和工作流程设计一套红外量子点材料的荧光远距离探测系统,其组成包括激光器、电脉冲产生装置、光学接收单元、光电探测器以及信号处理单元等,结构如图2所示。

      系统的待测目标是由PbS胶质量子点制成的薄膜材料,该材料在800~1000 nm波段有比较明显的激光吸收,并在受到激发后辐射出1300 nm附近的红外荧光,图3为其发射光谱。

      Figure 2.  Composition of the fluorescence detection system for infrared quantum dot

      Figure 3.  PL spectrum of the infrared quantum dot material sample

      系统工作时,激光器发出980 nm的调制激光脉冲,照射并激发PbS红外量子点样品,产生~1300 nm的出射荧光。该荧光与激发光均在材料表面向外发生全向漫反射,并向远处传播。在接收端,这两种光将和外界环境的杂散光一起进入光学接收单元。光学接收单元由汇聚透镜与窄带滤光片组成,用于完成环境中待测荧光的收集与滤波处理。窄带滤光片的中心波长依据图3待测样品的发射光谱选定为1300 nm,以保正系统对待测荧光之外光束的最大化滤除。经窄带滤光片后,红外量子点材料受激产生的待测荧光与剩余的少量环境杂散光将汇聚到PIN光电二极管上,进行光电转换,产生电信号。

      探测系统电信号的处理流程如图4所示,采用调制解调的方式实现红外量子点材料荧光回波脉冲信号的放大和有效提取。

      Figure 4.  Signal processing flow chart of the fluorescence detection system

      频率控制单元控制信号发生器输出两路以相同频率震荡的电脉冲信号,其中一路用于对连续激光器进行调制,产生频率可控的已调激光脉冲,进而激发待测量子点样品产生红外荧光辐射。另一路电脉冲信号则被信号处理单元用作参考信号,对已调荧光信号经光电转换和放大等处理后的信号波形进行解调,实现荧光信号的检波拾取。

      图5为激发光与荧光脉冲信号在不同调制频率下的波形对比。图中,量子点材料的荧光信号(蓝色)能量低于激发光信号(红色),且有展宽和相移。利用红外量子点的荧光响应特性优化激发光脉冲的调制频率,可以明显改善荧光脉冲的展宽和相移,使荧光信号波形与激发光信号波形基本一致(图5(b))。

      Figure 5.  Laser echo signal waveforms for infrared quantum dot samples at different modulation frequencies

      图6为有、无待测样品时系统放大滤波单元的输出信号波形。未放置样品时,由于无频率转换荧光信号产生,且激发光与杂散光已由光学子系统和放大滤波电路基本滤除,因此,输出波形为一条几乎与零线平齐的直线。放置样品后,系统放大电路的输出波形则为由脉冲激光激发材料后的荧光脉冲回波,反映红外量子点材料的频率转换特性,其脉冲重复频率与激发光脉冲调制频率一致。对放大后的电信号进一步解调检波与分析,即可以实现红外量子点材料的远距离探测与分析。

      Figure 6.  Output waveforms of the amplification circuits without (a) and with (b) untested quantum dot samples

    • 此节利用第2节建立的红外量子点荧光探测系统对PbS胶质量子点薄膜的荧光回波进行远距离探测。为对比分析,定制两种尺寸相同(5 cm×5 cm),厚度分别为0.5 mm与1.1 mm、PbS量子点浓度分别为3 wt%与6 wt%的薄膜样品,并在后续分析中简称样品A与样品B。

      为减少自然光干扰与环境变化扰动,实验选择在夜间空旷的户外环境中进行。实验中,将红外量子点薄膜待测样品置于较大尺寸的金属背板中心制成标靶,垂直放置于与激光器和探测系统基本等高的一定距离之外,并测试背景噪声。随后,再由可见的氦氖激光作为980 nm激光脉冲的导引光对样品进行瞄准激发。固定激光器的出射功率,改变激光器/探测器与样品之间的距离$ L $,从而调节样品表面的激发光功率密度$ {I}_{exc} $在0~16.5 mW/cm2之间变化,并将探测系统光学接收单元的性能调整到最优状态,分别记录荧光信号经系统多级放大后的电压峰峰值$ {V}_{PP} $以及经相敏检波电路输出的直流电压值$ {V}_{DC} $图7为系统分别对两种量子点薄膜样品A、B进行探测时,红外荧光经系统检波处理后的输出直流电压$ {V}_{DC} $随探测距离$ L $的变化曲线。

      Figure 7.  Variation of output DC voltage of the detection system for quantum dot fluorescence

      图7表明,当红外量子点样品A与样品B受到激发产生荧光回波时,探测系统输出的直流电压随探测距离的增大($ {I}_{exc} $减小)而降低,并分别在56.2 m和65.2 m处达到极限,此时的直流电压值接近于量子点样品未激发时系统的输出直流电压${V}_{DC}^{0}\approx 130\;\rm{m}\rm{V}$。当探测距离再继续增大时,有、无激发光时的系统输出没有明显差别,量子点荧光无法探测。

      图8以样品B为例,给出了在较近和较远两处位置探测时系统输出的已调放大波形(图8(a)图8(c))和解调后的直流波形(图8(b)图8(d))。

      Figure 8.  Fluorescence detection signal waveforms of sample B (before and after phase sensitive detection)

      图8所示的荧光检测信号波形可以看到,在较近(32.7 m)和较远(65.2 m)两个距离处系统均能实现荧光回波的有效探测($ {V}_{DC} $),但探测距离的增大已经导致荧光检测信号放大后波形的明显劣化与失真。相敏检波电路在一定程度上弥补了这一失真,由噪声中提取出真正的荧光信号,有效地增加了系统对荧光回波的可探测距离。然而,随着探测距离的进一步增大,已调放大波形失真加剧,相敏检波电路的补偿作用达到极限。此时,系统对荧光回波的探测几乎失效,探测距离达到极大值${L}^{Max}$,相敏检波电路输出直流电压值${V}_{{DC}}\approx 140\;\rm{m}\rm{V}$

      由于待测样品在较远距离发射荧光并传输,可近似为点光源发光。因此,根据照度定律,系统接收端光电探测器表面接收到的荧光功率密度$ {I}_{R} $与探测距离$ L $以及激发光功率密度$ {I}_{exc} $和量子点材料的荧光转换效率$ \eta $之间存在如下关系:

      式中:$ M $为等效的荧光传输透过率参数,包含系统光学接收孔径、环境与滤光片等造成的能量衰减,测试条件相同时,其值基本不变。改写公式(1),得到:

      这表明,系统对材料荧光的探测距离$ L $随激发光强与材料荧光转换效率的增大而增大,且与探测器表面的荧光功率密度$ {I}_{R} $成反比。因此,当激发光强与待测材料不变时,探测系统对量子点材料的受激荧光存在最大可探测距离$ {L}^{Max} $,其值由光电探测器光强响应的最小阈值$ {I}_{R}^{th} $决定。

      图9给出调节照射样品表面的激发光强度大小时,系统随着红外量子点材料样品A与样品B最大可探测距离的变化情况。图9(a)图9(b)分别对应两种不同的光电探测器的响应阈值。

      Figure 9.  The maximum detectable distance of fluorescence for quantum dot sample varies with the power density of excitation light

      图中散点数据及其拟合曲线规律表明,被测PbS量子点薄膜样品的荧光最大可探测距离随其表面激发光功率密度的增大而呈抛物线型增长,在激发光功率密度为$ 45 \;{\rm{mW/{cm}}}^{2} $时达百米量级;增大系统光电探测器孔径后,这一距离进一步增大到120 m (样品A)和160 m (样品B),若进一步优化实验条件,甚至可以达到134 m (样品A)和210 m (样品B)。并且,数据变化趋势显示被测红外量子点材料的荧光发光能力与远距离传输能力尚未饱和,若样品表面的激发光强度继续增加,荧光回波脉冲的可探测距离也将继续按曲线规律进一步增大。这意味着前述荧光探测系统能够在百米甚至两百米之外成功检测到红外量子点样品的受激荧光,进而可以通过样品的有无判断如何实现红外量子点材料的远距离识别。

      当激发光功率密度较低时($ <2\;{\rm{mW/{cm}}}^{2} $),图中荧光最大可探测距离的实测值明显小于曲线拟合值。这说明当激发光较弱时,其照射量子点薄膜样品产生荧光的功率转换效率达不到拟合曲线系数所等效的荧光效率值,即样品中的量子点可能尚未充分激发。只有当激发光功率密度增大到一定程度时,PbS量子点薄膜样品的荧光激发效率才能达到稳定。这在一定程度上说明,红外量子点薄膜样品受激辐射远距离传输荧光的过程存在阈值性。

      此外,由于每幅图中两组数据的测试系统参数与环境参数均相同,其拟合系数$ q $之比与样品荧光效率之比存在如下关系:

      将曲线拟合系数$ {q}_{A} $$ {q}_{B} $的值代入公式(4),可以得到两种样品的荧光功率效率之比为:

      即激发光功率密度相同时,样品B受激辐射的荧光强度是样品A的1.8倍,这也是图中样品B比样品A能够达到更大的探测距离极限的原因,产生这一差异主要是由于两种量子点薄膜样品的厚度和量子点分散浓度都不相同。显然,量子点浓度越高、薄膜厚度越大,单位激光功率激发时产生的有效荧光越强。后续结合材料样品的具体制备过程,可以进一步定量分析量子点浓度、薄膜厚度等参数对荧光效率的影响。同时,若能够定量测算环境及系统的光学衰减,上述过程还可用于估算和对比不同形态红外量子点材料的荧光功率效率,并由此指导防伪与识别应用中红外量子点样品的制备工艺。

    • 文中从红外量子点材料频率转换荧光的产生机理与特性分析出发,针对其在宏观远距离防伪与识别检测中的应用,基于光电检测技术设计并搭建了一套适用于红外量子点薄膜荧光的微弱信号检测系统,并用其对两种不同厚度和浓度的PbS量子点薄膜样品进行了荧光检测实验。实验结果及分析表明,辐射荧光波长~1300 nm的红外量子点材料可以在100~200 m距离之外被该系统有效地探测与识别,且识别距离还可以进一步提升。该系统结构简单,操作容易,仅靠改变系统的光学接收单元参数,就有可能将其推广到其他波段红外量子点材料的远距离识别检测。这为红外量子点材料的远距离防伪与识别应用奠定了基础。

      同时,系统对样品荧光的远距离检测结果还可以用于材料荧光特性的对比与分析。除可以在相同的测试条件下对不同红外量子点样品的荧光功率转换效率进行定性对比之外,还可以在已知环境与系统光学衰减的前提下,定量估算不同量子点样品的荧光功率效率,并由此对样品厚度、样品结构以及样品中量子点浓度的设计进行指导。这将极大地推动红外量子点材料荧光远距离应用的多样性发展。

Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return