Volume 50 Issue 7
Jul.  2021
Turn off MathJax
Article Contents

Wang Xiaoyan, Xu Gaokui. Design of optical system of high isolation laser communication terminal[J]. Infrared and Laser Engineering, 2021, 50(7): 20200521. doi: 10.3788/IRLA20200521
Citation: Wang Xiaoyan, Xu Gaokui. Design of optical system of high isolation laser communication terminal[J]. Infrared and Laser Engineering, 2021, 50(7): 20200521. doi: 10.3788/IRLA20200521

Design of optical system of high isolation laser communication terminal

doi: 10.3788/IRLA20200521
  • Received Date: 2021-03-10
  • Rev Recd Date: 2021-04-16
  • Publish Date: 2021-07-25
  • Laser communication has outstanding advantages such as large information capacity, high optical gain, high anti-interference and anti-interception capabilities. It was an important technical means to solve high-speed communication problems. According to the requirements of transceiver isolation and two-way duplex working mode in laser communication. After simulating and analyzing the isolation of different optical structures, it was proposed to use off-axis three-mirror optical antennas to reduce backscattering to achieve high transceiver isolation. In the optical design, the smallest incident angle on the optical surface was controlled through iterative optimization, and clear index requirements were put forward for the fine processing technology of the optical surface, and finally the isolation was more than 70 dB. The simulation analysis shows that the object field angle of 5 mrad isolation is 73.7 dB, and the measured isolation of Φ150 mm off-axis three-mirror optical antenna can reach 73 dB, which is consistent with the results of simulation analysis. It meets the requirements of satellite laser communication system tracking and communication for light antenna isolation, and can be used for inter-satellite laser communication.
  • [1] Hou Jia, He Zhiping, Shu Rong. Emitting system of fiber-array 3D laser imaging using off-axis three-mirror system [J]. Infrared and Laser Engineering, 2016, 45(4): 0406001. (in Chinese) doi:  0406001
    [2] McCarthy D J. Operating characteristics of thestratoscope II balloon-borne telescope [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 5(2): 323-329.
    [3] Ge Jingjing, Lin Zhaorong, Zhu Dakai. Design of mid-wave infrared continuous zoom system [J]. Journal of Applied Optics, 2013, 34(5): 728-732. (in Chinese)
    [4] Stone T, George N. Hybrid diffractive-refractive lenses and achromats [J]. Applied Optics, 1988, 27(14): 2960-2971. doi:  10.1364/AO.27.002960
    [5] Mercado R I, Ryzhikov L. Designs of apochromats and superachromatic objectives[C]//SPIE, 1998, 3482: 321-331.
    [6] Biswas A, Wilson K E, Page N A. Lasercom Test and Evaluation Station (LTES) development: an update[C]//SPIE, 1998, 3266: 22-32.
    [7] Keizo Nakagawa, Akio Yamamoto. Engineering model test of LUCE (Laser Utilizing Communications Equipment)[C]// SPIE, 1996, 2699: 114-120.
    [8] Shikatani M, Toyoda M. Ground system development for the ET S-VI/ LCE laser communications experiment[C]//SPIE, 1993, 1866: 21-29.
    [9] Zhang Wenying, Zhang Guoyu, Zhang Lei. Optical system design of large-diameter off-axis reflection-type star simulator [J]. Journal of Applied Optics, 2014, 35(6): 949-954. (in Chinese)
    [10] Liu Yuan, Ye Demao, Wang Jianying, et al. Design of 50-1 000 mm zoom optical system with high zoom ratio [J]. Journal of Applied Optics, 2020, 41(6): 1147-1152. (in Chinese) doi:  10.5768/JAO202041.0601002
    [11] Zhao Meng, Yan Changxiang, Wu Congjun. Simulation analysis of isolation between laser communication ground test equipments [J]. Chinese Optics, 2020, 13(3): 472-481. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(5)

Article Metrics

Article views(394) PDF downloads(64) Cited by()

Related
Proportional views

Design of optical system of high isolation laser communication terminal

doi: 10.3788/IRLA20200521
  • 1. Southwest Forestry University, Kunming 650224,China
  • 2. Kunming Railway Vocational and Technical College, Kunming 650224,China

Abstract: Laser communication has outstanding advantages such as large information capacity, high optical gain, high anti-interference and anti-interception capabilities. It was an important technical means to solve high-speed communication problems. According to the requirements of transceiver isolation and two-way duplex working mode in laser communication. After simulating and analyzing the isolation of different optical structures, it was proposed to use off-axis three-mirror optical antennas to reduce backscattering to achieve high transceiver isolation. In the optical design, the smallest incident angle on the optical surface was controlled through iterative optimization, and clear index requirements were put forward for the fine processing technology of the optical surface, and finally the isolation was more than 70 dB. The simulation analysis shows that the object field angle of 5 mrad isolation is 73.7 dB, and the measured isolation of Φ150 mm off-axis three-mirror optical antenna can reach 73 dB, which is consistent with the results of simulation analysis. It meets the requirements of satellite laser communication system tracking and communication for light antenna isolation, and can be used for inter-satellite laser communication.

    • 作为光通信技术之一的空间激光通信技术,将激光作为光源,实现一对一、一对多或者多对一之间的通信。作为无线光通信的一种,激光通信具有很多优点,如通信频带宽、携带信息量大、天线尺寸小、光学增益大、功耗低和抗截获能力强等优点[1-5]。正是由于这些优点,激光通信一直保持着高速的发展。与此同时,激光通信还存在一些限制其持续发展的问题,包括大气引起的通信光能量衰减、有效的消杂光方法、地面测试平台的设计、隔离度要求较高,系统设计和加工难度大等[6-9]

      近些年,国内外专家学者对激光通信终端光学系统做了大量研究工作,取得了一些成果[10]。2020年,中国科学院长春光学精密机械与物理研究所的赵猛从被测终端与测试平台间的光学干扰问题出发,研究了被测终端与测试平台间隔离度的关系,分别设计了卡塞格林和离轴三反光学天线,并根据杂散光传输模型,采用杂散光分析软件分析了光学天线结构形式及表面粗糙度两方面对隔离度的影响[11]

      文中根据激光通信中收发一体、双向双工工作模式对收发隔离度的要求,对激光通信终端光学系统进行了设计(添加主要指标)。对高隔离度激光通信终端光学系统进行了仿真分析,并根据光学天线的工作原理,搭建了与实际工作状态一致的隔离度测试装置,根据设计结果研制出高隔离度激光通信终端光学系统并对系统性能进行了测试,实测结果表明:Φ150 mm离轴三反光学天线的隔离度可达73 dB,满足卫星激光通信系统捕跟和通信对光线天线隔离度的要求。

    • 发射激光经过天线各个光学元件时发生反射或散射,有一部分能量会通过后向散射和反射的路径进入接收探测器,如图1所示。

      Figure 1.  Schematic diagram of isolation

      发射光束充满光学天线接收出瞳的光功率为${p_1}$,经光学天线各光学件反射、散射和结构件散射回到接收出瞳位置视场角内的光功率为${p_2}$,则光学天线收发隔离度为:

      对于离轴反射式光学天线,因为没有光线垂直入射到光学表面,直接通过后向反射途径进入接收光路的能量为零,能够进入接收光路的能量主要是通过散射途径进入的,因此,对于离轴光学天线,光学元件的后向散射是干扰接收信号的主要影响因素,降低光学元件表面散射可提高天线的隔离度水平。

    • 激光通信终端光学系统是激光通信终端中承担光束发射、接收任务的核心部件,其主要功能为保证发射星上终端发射光束质量,使对面终端可接收到足够的光功率;保证终端接收系统成像质量,使其可准确判断对面终端位置,并可接收到足够的信号光功率。激光通信终端光学系统设计指标如表1所示。

      ParametersValue
      Wavelength/nm1 550
      FOV1/μrad500
      FOV2/mrad5
      Wave aberration0 field RMS value/nm≤44.3
      0 field PV value/nm≤387.5
      >0.5 field RMS value/nm≤44.3
      >0.50 field PV value/nm≤387.5
      Isolation/dB≥70

      Table 1.  Main technical indexes of optical system of laser communication terminal

      根据指标要求选取离轴三反无焦望远镜的初始结构进行优化,主、次镜成一次中间像,目镜将一次像转成平行光,限制光线出射角不小于5°,用Code V软件完成了图2中的光学设计,从调制传递函数曲线可看出,最终系统的成像质量优良,在150线对/mm时全视场MTF值>0.5,满足使用要求。

      Figure 2.  Design results of optical system of laser communication terminal

    • 视场设置如图3所示,将光学圆视场划分为21个,采用米字形方法,其中1#代表中心视场,2#、3#、4#、5#代表0.3视场;6#、7#、8#、9#、16#、14#、16#、18#、20#为0.5视场;10#、11#、12#、13#、15#、17#、19#、21#为边缘1视场。

      Figure 3.  View definition

      各表面上光斑分布如图4所示,光线充满入瞳,因主镜离轴量为147 mm,光斑在主镜上光斑分布如图4(a)右半部分所示,次镜和折转镜上光斑能量分布如图4(b)所示,从图4(c)中间像面光斑分布可以看出,中间像面成像质量良好。

      Figure 4.  Distribution of light spots on each surface

    • 各面上最小入射角、最大入射角和面元距离如表2所示,其中最核心的优化控制条件为最小入射角>4°,可有效抑制镜面散射光对系统隔离度的影响。

      Name of the elementMinimum incident angle/ (°)Maximum incident angle/ (°)Bin distance
      Primary5.123.9221.3
      Audition4.125.9170.6
      Turn the mirror29.838.3218.5
      Three mirror8.412.6286.8

      Table 2.  Minimum incident angle, maximum incident angle and surface element distance on each face

    • 激光通信终端光学系统设计的波像差结果如图5所示。

      Figure 5.  Image quality of each field of view

      各视场设计结果如表3所示,满足系统技术指标要求。

      X /(°)Y /(°)RMS (λ:1550 nm)
      FOV1000.007 5
      0−0.014 3240.007 3
      00.014 3240.008 4
      −0.014 32400.007 6
      0.014 32400.007 6
      FOV20−0.070.018 4
      00.070.019 9
      −0.0700.014 3
      0.0700.014 3
      −0.143 2400.040 8
      0.143 2400.040 8

      Table 3.  Design results of each field of view

    • 综合考虑灵敏度分析、曲率半径和K误差、综合误差分析,以出瞳处折射角控制在±30"以内,小视场波像差RMS控制在0.028λ以内,大视场波像差RMS控制在0.091λ以内,给出了最终的公差和检测精度要求,其中反射镜面形最大公差7 nm,间隔公差最大±6 μm,偏心和倾斜公差最大±10"。

    • 根据技术指标要求,建立杂散光仿真分析模型,如图6所示。

      Figure 6.  Ray tracing graph is analyzed by isolation simulation

      当光学镜面(主镜、次镜、折转镜和目镜)取不同粗糙度,隔离度分析结果为如表4所示(包含镜面固定结构件和其他机械件)。

      Roughness/nmIsolation/dB
      0.574.2
      0.871.5
      169.7

      Table 4.  Simulation of isolation degree of optical system with different mirror roughness

      根据隔离度仿真分析结果,针对光学加工表面粗糙度提出了明确的技术指标要求:各反射镜表面粗糙度Rq<0.5 nm。最终加工镀膜完成后,实测其表面粗糙度,并代入实测表面粗糙度值进行了隔离度仿真分析,仿真结果满足指标要求,具体数据如表5所示。

      Roughness/nmIsolation/dB
      Primary: 0.4574.9
      Audition: 0.47
      Turn the mirror: 0.44
      Three mirror: 0.33

      Table 5.  Measuring the isolation degree of optical system with different mirror roughness

    • 根据光学天线的工作原理,搭建了与实际工作状态一致的隔离度测试装置,测试原理如图7所示。

      Figure 7.  Schematic diagram of isolation test

      入射激光经过分光棱镜反射后进入离轴光学天线,在天线出瞳处用光功率计测量进入天线的光功率W1,天线的出射光进入光陷阱,天线的后向散射光经分光棱镜和接收支路的汇聚镜头汇聚,汇聚镜头用来限制出瞳处的视场角,激光关闭用光功率计在接收支路处测背景光的光功率W0,激光器打开后,再次用光功率计在接收支路的汇聚镜头的像面处测光功率W2,根据公式(1)可计算隔离度$\eta $为:

      利用上述隔离度测量装置,实测了Φ150 mm离轴光学天线的隔离度为73 dB,与仿真分析结果基本一致。

    • 收发一体双向通信的离轴三反光学天线的隔离度与光学设计方案有关,通过理论分析,提出迭代优化光学面最小入射角控制在大于4°和光学表面的精细控制技术,有效抑制系统后向散射杂光对系统隔离度的影响,并对光学面包含微观粗糙度、表面光洁度、膜层质量、污染等提出了严格的工艺技术指标要求,实现高隔离度并保障了极微弱信号有效探测,仿真分析表明离轴光学天线在物方视场5 mrad的隔离度为74.9 dB,实测了Φ150 mm离轴三反光学天线的隔离度为73 dB,测量结果与仿真分析一致,验证了隔离度仿真分析方法和分析模型的正确性。

Reference (11)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return