Repetition frequency variation of a 2 μm GaSb-based passively mode-locked laser (Invited)
-
-
Abstract
Multi-gigahertz optical pulse trains generated from mode-locked semiconductor lasers are promising for a number of applications in many areas. For most of these applications, a fixed and stable pulse repetition frequency is necessary. Since the repetition frequency of such lasers is primarily determined by the effective refractive index of the laser waveguide and the laser cavity length, uncertainties during device fabrication as well as cleaving process may bring deviations to the repetition frequency. To gain better knowledge of how working conditions of such lasers effect their repetition frequency and thus compensate the above-mentioned deviations, a novel 2 µm InGaSb/AlGaAsSb single quantum well (SQW) mode-locked laser (MLL) was presented in this work. It has a two-section configuration (gain section and saturable absorber section separated by an electrical isolation region) and stable mode locking was achieved in this laser under a variety of bias conditions up to 60 ℃. Repetition frequency variations of this mode-locked laser with bias condition (gain section current Ig, absorber section voltage Va) and working temperature (T) were systematically recorded, and the mechanisms behind these variations were analyzed. It is believed that this work enables us to have a better understanding of passively mode-locked semiconductor lasers and is of interest to better meet the application-required frequencies.
-
-