Volume 50 Issue 1
Jan.  2021
Turn off MathJax
Article Contents

Du Jiayuan, Zhao Xinyu, Hu Xinhua. Research progress of artificial microstructure thin layer infrared detector (Invited)[J]. Infrared and Laser Engineering, 2021, 50(1): 20211002. doi: 10.3788/IRLA20211002
Citation: Du Jiayuan, Zhao Xinyu, Hu Xinhua. Research progress of artificial microstructure thin layer infrared detector (Invited)[J]. Infrared and Laser Engineering, 2021, 50(1): 20211002. doi: 10.3788/IRLA20211002

Research progress of artificial microstructure thin layer infrared detector (Invited)

doi: 10.3788/IRLA20211002
  • Received Date: 2020-11-07
  • Rev Recd Date: 2020-12-09
  • Available Online: 2021-01-22
  • Publish Date: 2021-01-22
  • The thin layer of infrared detection material guarantees the uniformity of the materials and reduces the signal noise in infrared detection. The absorption of infrared detector is limited by the thin layer of infrared detection material attributing to small volume. According to the characteristics of different infrared detection materials, artificial microstructure can effectively improve the performance of infrared detector. The strategies of enhancing the absorption of thin-layer infrared detection materials were introduced. The strategies were based on metal back plate, metal grating and asymmetric Fabry-Perot cavity. They could have an excellent performance in their own adaptive scenarios. Meanwhile, the mechanism of adjusting the absorption peak height and width by artificial microstructure was also elaborated briefly. The application of artificial microstructure in several infrared detectors was demonstrated. Finally, an artificial microstructure HgCdTe infrared detector was designed, which could achieve broadband absorption in 3.5-5.5 μm atmospheric window. The absorption peak reached 91.8% and the relative peak width was 41.8%. In most of frequency in the atmospheric window, the absorption enhancement is higher than 6. The development of artificial microstructure opens up the design idea of traditional infrared devices, and provides theoretical basis and guidance for new infrared devices.
  • [1] Smith D R, Pendry J B, Wiltshir M C K. Metamaterials and negative refractive index [J]. Science, 2004, 305(5685): 788-792. doi:  10.1126/science.1096796
    [2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-79. doi:  10.1126/science.1058847
    [3] Pendry J B. Negative refraction makes a perfect lens [J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi:  10.1103/PhysRevLett.85.3966
    [4] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber [J]. Physical Review Letters, 2008, 100(20): 207402. doi:  10.1103/PhysRevLett.100.207402
    [5] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980. doi:  10.1126/science.1133628
    [6] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor [J]. Nano Letters, 2010, 10(7): 2342-2348. doi:  10.1021/nl9041033
    [7] Cattoni A, Ghenuche P, Haghiri-Gosnet A M, et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography [J]. Nano Letters, 2011, 11(9): 3557-3563. doi:  10.1021/nl201004c
    [8] Zhang K, Luo W, Huang S, et al. Wavelength-selective infrared detector fabricated by integrating LiTaO3 with a metamaterial perfect absorber [J]. Sensors and Actuators A: Physical, 2020, 313: 112186. doi:  10.1016/j.sna.2020.112186
    [9] Gu P, Wang J, Müller-Buschbaum P, et al. Infrared Thin film detectors based on thermoresponsive microgels with linear shrinkage behavior and gold nanorods [J]. ACS Applied Materials & Interfaces, 2020, 12(30): 34180-34189.
    [10] Wehner J G A, Musca C A, Sewell R H, et al. Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors [J]. Applied Physics Letters, 2005, 87(21): 211104. doi:  10.1063/1.2133914
    [11] Zhang Y, Luo H, Shen W. Study on the quantum efficiency of resonant cavity enhanced GaAs far-infrared detectors [J]. Journal of Applied Physics, 2002, 91(9): 5538-5544. doi:  10.1063/1.1465513
    [12] Goldflam M D, Kadlec E A, Olson B V, et al. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers [J]. Applied Physics Letters, 2016, 109(25): 251103. doi:  10.1063/1.4972844
    [13] Wang S, Yoon N, Kamboj A, et al. Ultra-thin enhanced-absorption long-wave infrared detectors [J]. Applied Physics Letters, 2018, 112(9): 091104. doi:  10.1063/1.5017704
    [14] Chu Z, Zhou J, Dai X, et al. Circular polarization discrimination enhanced by anisotropic media [J]. Advanced Optical Materials, 2020, 8(9): 1901800. doi:  10.1002/adom.201901800
    [15] Xia Y, Wang J, Zhang Y, et al. Transmission-type optical modulator based on graphene plasmonic resonator integrated with off-resonant Au structure [J]. Advanced Optical Materials, 2020, 8(18): 2000264. doi:  10.1002/adom.202000264
    [16] Levine B F, Bethea C G, Hasnain G, et al. High sensitivity low dark current 10 μm GaAs quantum well infrared photodetectors[J]. Appl Phys Lett, 1990, 56: 851.
    [17] Vurgaftman I, Canedy C L, Jackson E M, et al. Analysis and performance of type-II superlattice infrared photodetectors[J]. Opt Eng, 2011, 50: 061007.
    [18] Martyniuk P, Rogalski A. Quantum-dot infrared photodetectors: Status and outlook [J]. Progress in Quantum Electronics, 2008, 32: 89-120. doi:  10.1016/j.pquantelec.2008.07.001
    [19] Rogalski A. HgCdTe infrared detector material: history, status and outlook [J]. Reports on Progress in Physics, 2005, 68(10): 2267-2336. doi:  10.1088/0034-4885/68/10/R01
    [20] Piper J R, Fan S. Total Absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance [J]. ACS Photonics, 2014, 1(4): 347-353. doi:  10.1021/ph400090p
    [21] Liu X, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance [J]. Physical Review Letters, 2010, 104(20): 207403. doi:  10.1103/PhysRevLett.104.207403
    [22] Hu X, Li M, Ye Z, et al. Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings [J]. Applied Physics Letters, 2008, 93(24): 241108. doi:  10.1063/1.3052893
    [23] Zhang C, Chang H, Zhao F, et al. Design principle of Au grating couplers for quantum-well infrared photodetectors [J]. Optics Letters, 2013, 38(20): 4037. doi:  10.1364/OL.38.004037
    [24] Chang H, Zhang C, Zhao F, et al. Antireflection coatings on Au plasmonic gratings for infrared photodetection [J]. Plasmonics, 2015, 10(6): 1519-1524. doi:  10.1007/s11468-015-9961-y
    [25] Yu Z, Veronis G, Fan S, et al. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures [J]. Applied Physics Letters, 2006, 89(15): 151116. doi:  10.1063/1.2360896
    [26] Wang J, Chen A, Zhang Y, et al. Manipulating bandwidth of light absorption at critical coupling: an example of graphene integrated with dielectric photonic structure [J]. Physical Review B, 2019, 100(7): 075407. doi:  10.1103/PhysRevB.100.075407
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(662) PDF downloads(181) Cited by()

Related
Proportional views

Research progress of artificial microstructure thin layer infrared detector (Invited)

doi: 10.3788/IRLA20211002
  • Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Department of Materials Science, Fudan University, Shanghai 200433, China

Abstract: The thin layer of infrared detection material guarantees the uniformity of the materials and reduces the signal noise in infrared detection. The absorption of infrared detector is limited by the thin layer of infrared detection material attributing to small volume. According to the characteristics of different infrared detection materials, artificial microstructure can effectively improve the performance of infrared detector. The strategies of enhancing the absorption of thin-layer infrared detection materials were introduced. The strategies were based on metal back plate, metal grating and asymmetric Fabry-Perot cavity. They could have an excellent performance in their own adaptive scenarios. Meanwhile, the mechanism of adjusting the absorption peak height and width by artificial microstructure was also elaborated briefly. The application of artificial microstructure in several infrared detectors was demonstrated. Finally, an artificial microstructure HgCdTe infrared detector was designed, which could achieve broadband absorption in 3.5-5.5 μm atmospheric window. The absorption peak reached 91.8% and the relative peak width was 41.8%. In most of frequency in the atmospheric window, the absorption enhancement is higher than 6. The development of artificial microstructure opens up the design idea of traditional infrared devices, and provides theoretical basis and guidance for new infrared devices.

    • 人工微结构是一种人造的、周期的、结构尺寸远小于或接近入射波长的新型材料,展现出天然材料无法实现的特性,提升了人们对经典波的调控能力。电磁超材料是一种最典型的人工微结构,自从被Pendry提出以来,得到了广泛的研究与应用[1],如负折射[2]、超透镜[3]、完美吸收器[4]和电磁隐身[5]等。1800年,英国天文学家F.W. Herschel在研究太阳光谱的热效应时,首次发现了红外辐射。红外辐射是波长介于可见光和微波之间的电磁波。任何一个物体在热力学绝对零度以上都会发射出电磁波。利用1~3 μm,3.5~5.5 μm,8~12 μm三个重要的大气窗口,红外探测器件能够捕获辐射源释放的红外辐射并将它转化为某种可测量的物理量。红外探测器件中有一类是利用红外辐射的热效应,可通称为“热敏类红外探测器”或“热探测器”。而另一类利用光电效应的红外光电探测器则在制冷型的中长红外波段和非制冷型的近红外波段有良好的应用效果。人工微结构材料的迅猛发展,为红外器件的研发迎来了新的机遇[6-9]。诸如辅助增强红外探测器的吸收效率[10-13],开发能够增强调制光偏振态或透射率能力的红外器件[14-15]等等。随着研究的深入,集成人工微结构的红外器件在安防、军事探测、通讯和传感、科学检测等领域都将发挥着不可替代的作用。

    • 碲镉汞、量子阱、Ⅱ型超晶格和量子点是目前主流的红外探测材料。这几种红外探测材料各有千秋,都有各自最适宜的工作环境和条件。量子阱材料虽然响应波长易调易控,响应时间短,且易实现多色探测,但是无法吸收垂直入射的光且暗电流较高[16]。Ⅱ型超晶格材料能吸收正入射的光且漏电流较低,但是衬底(GaSb)较软机械强度不足[17]。量子点虽然理论上有非常多的优点,但是纵向和横向尺度的均匀性不足使得实际效果大打折扣,并且生长层数还受限于应力积累[18]。红外探测材料HgCdTe(MCT)具有能带范围连续可调、量子效率高、载流子寿命长且可以在高温环境下工作等特点[19]。但是,与大多数红外探测材料相似,HgCdTe材料的制备过程非常复杂,特别是制备大尺寸和大厚度的均匀HgCdTe单晶薄膜。一种能降低制备成本和难度的可行方案是设计和使用薄层的红外探测材料。相对而言,薄层红外探测材料不仅能够保证材料的均匀度还能够降低红外器件探测时信号的噪音。然而,薄层的红外探测材料本身因为厚度较小无法获得足够理想的吸收效率。光子晶体板、超材料、超表面、介质波导、等离子体结构等多种人工微结构能增加红外探测材料的光吸收,为破解薄层红外探测材料低吸收率的难题提供了解决思路。

    • Fan曾指出[20],单独的薄层吸收材料(如图1中结构Ⅰ所示)具有向前和向后两个辐射端口,最高的吸收效率被限制在50%。倘若如图1中结构Ⅱ所示,在薄层的吸收材料后增加一块完美的反射镜,整个结构仅具有一个端口,便能突破吸收效率不能超过50%的限制。当薄层吸收材料前端面反射出的波能与由薄层吸收材料和反射镜组成的腔体激发的波完美抵消,就能实现完美吸收。然而,这类方案严苛地要求薄层吸收材料的反射系数r和透射系数t须满足$ \left|r\right|=\left|{r}^{2}-{t}^{2}\right| $,通常难以实现。一个简单的改进方案是将薄层吸收材料置入不对称的Fabry-Perot共振腔中(如图1中结构Ⅳ所示),共振腔由后端的反射镜和前端的反射镜组成,后端的反射镜的反射率为100%,而前端的反射镜却有一些微弱的透射。当前端的反射镜透过的能量和共振腔中薄层吸收材料的吸收相等时,即$\left|{{t}}^{2}\right|={A}$,就可以实现完美吸收。

      Figure 1.  Three kinds of artificial microstructures for enhancing absorption of thin layer infrared detection materials. (Ⅰ) Unstructured, (Ⅱ) metal film as perfect mirror behind thin layer, (Ⅲ) metal grating in front of thin layer, (Ⅳ) asymmetric Fabry-Perot resonant cavity

    • 人工微结构主要是利用光场的局域,增强了红外探测材料的吸收。许多集成在红外探测器件的微结构都可以视为一种不对称的Fabry-Perot共振腔[6-9, 20-22]。Liu等人提出了一种红外波段的超材料完美吸收器[21]。这种完美吸收器是金属-介质-金属(MIM)结构,它具有一层十字形金属谐振器阵列和一层镀有金属薄膜的接地层,并在其间放置电介质材料。十字形金属谐振器是一种为人熟知的环形电谐振器(ERR),对电场有强耦合作用。当入射电磁波的电场方向与十字形金属谐振器中的一条边平行时,会在共振频率处产生明显的共振,形成一个反射峰,电场局域在沿着该边相邻的金属谐振器端点之间形成的间隙处。在红外波段,金属是近似完美的反射镜,它们能够反射该波段电磁波的大部分能量。金属薄膜相对于分布式布拉格反射器 (DBR)结构,厚度比较小,但是却在吸收小部分能量的同时,反射大部分的电磁波。在十字形金属谐振器后合适的距离放置金属化的接地层,在红外波段,电磁波无法穿透接地层的金属薄膜,在共振频率处,与入射电磁波的电场方向垂直的电场被激发并局域于十字形金属谐振器与接地层的金属薄膜之间,使得整个结构形成一个吸收峰。因此,低损耗的介质材料被置入十字形金属谐振器与接地层的金属薄膜之间,便能吸收微结构局域于此的能量,显著地增强介质材料的吸收,如图2(c)中①所示。

      Figure 2.  (a) Strategies for enhancing absorption of thin layer infrared detection materials; (b) Schematic diagram of general resonance; (c) Absorption mechanism of HgCdTe infrared detector with artificial microstructure: ① Distribution of |Ey| in structure Ⅳ, which is obviously concentrated in F-P cavity; ② Distribution of |Ey| in structureⅢ, which is concentrated in the SPP. The sections are the x-y plane as shown as green square, and the metal part in the sections is framed by the white dotted line. Δ/a = 0.75,λ0 = 3.9 μm,t3 = 310 nm

      还有一些红外探测器件的微结构可以视为一种仿表面光栅,对于某些特殊的红外探测材料[23-26],例如只能吸收垂直于堆垛方向传播的电磁波的量子阱材料,这种微结构改善吸收效率的效果更好。仿表面光栅的主要作用是将传播波转换为表面波,能量集中在薄层的红外探测材料与金属光栅层的界面处,如图2(c)中②所示。

      控制吸收带宽和增强吸收效率一样重要。Wang等人利用光子晶体板结构增强石墨烯的吸收。同时,根据耦合模理论他们提出了一种通用的定制吸收带宽的方法。他们设计的包覆光子晶体板的石墨烯基吸收器,调节合适的石墨烯的层数和光子晶体板的几何参数,实现了宽频的吸收。同时,通过调整石墨烯层相对光子晶体板的位置,也可以实现超窄频、高Q值的吸收。通常,一个谐振器的能量会以辐射或者内部损耗的方式被耗散,辐射的速率和损耗的速率分别是γrγa。吸收器的吸收强度是γa/γr的函数,且当γaγr相等时吸收强度取最大值,吸收器的吸收带宽是γa+γr的两倍。显而易见,当吸收材料的耗散速率不变时(厚度一定),微结构的主要作用是调控辐射的速率γr,使得辐射速率与耗散速率相匹配,从而增强了吸收器的吸收效率。但是,想要获得足够宽度的吸收带宽,就要牺牲一部分的吸收效率,使辐射速率稍大于耗散速率,来获得足够理想的吸收带宽。

    • 2008年Hu就已经开始研究利用一层金属光栅和一层金属薄膜形成F-P共振腔增强了量子点红外探测器的吸收效率[22]。在这项研究中,考虑的是一个简化的模型。模型的最上层是用金制备的厚度为t1的一维或二维光栅结构,其中一维光栅结构的周期为a,两条金属条之间的狭缝宽度为Δ。对于二维光栅,光栅结构的周期为a,排布的正方形孔洞的边长为Δ。在光栅结构的下方是砷化镓层(介电常数为12.43),利用不同的掺杂,在砷化镓层的中部形成包含量子点的厚度为t3的有源层结构(介电常数为12.43+0.5i)。有源层与砷化镓层的上表面和下表面的距离均为t2图3(b)中未示意距离t2)。而模型最底部是厚度为t4的金薄膜。底部足够厚度的金薄膜能够在中远红外波段近乎完全反射入射的电磁波,只有少部分的电磁波被金属结构本身耗散。有趣的是,对于同样是由金制备的光栅结构,光栅结构的吸收率远大于底层的金薄膜。有源层结构的吸收则介于金薄膜和金光栅之间,一维情况约为35%,二维情况约为30%。并且有源层的吸收在大范围的入射角度(0~60°)都能保持理想的高度(一维情况大于30%,二维情况大于25%)。通过对最上层金光栅结构的厚度t1和占空比Δ/a的调节,可以实现对砷化镓量子点红外探测器的吸收增强系数的调控。

      Figure 3.  Schematic of asymmetric Fabry−Perot cavity artificial microstructures infrared device. (a) Perfect metamaterial absorber [21]. The top layer is array of cross resonators, which has length l, width w and period a, the bottom layer is the ground plane; (b) Schematic of quantum dot (well) infrared detector and HgCdTe infrared detector with high-efficiency and broadband [22, 23-24]. The top layer is metal grating and the bottom layer is metal film. Metal grating can be 1D grating or 2D grating. The period of grating is a and the length of hollow part is Δ. The thickness of metal grating layer, metal film layer and detection medium (MCT) layer is t1, t4 and t3, respectively

      2013年,Zhang和Hu进一步研究了金光栅结构增强量子阱红外探测器的吸收效率[23]。与量子点红外探测器不同的一点是,量子阱红外探测器无法吸收垂直入射的入射波(介电常数张量只在垂直表面的方向上有虚部)。同时在这项研究中,整体结构不再是F-P共振腔结构,而仅仅是将单层的金光栅结构包覆在具有量子阱层的砷化镓介质层上方(如图1中结构Ⅲ所示)。电磁波在入射复合结构后,会在金光栅和介质层之间形成表面等离子体激元,转化为沿着金属光栅-介质界面传播的表面波。当入射波长满足$\sqrt{{\left(\mathit{{\rm{sin}}}\left(\theta \right)/\lambda +(i/a\right)}^{2}+{\left(j/a\right)}^{2}}={n}_{{\rm{spp}}}/\lambda$时,能激励起相应的表面波模式。表面波的电场强度沿着表面的法向,并且在量子阱层有着比较大的强度,因此能增强量子阱层的吸收。吸收率是参考结构的4~5倍。此外,该研究还考虑了量子阱层中的实际响应,计算了理想量子阱(IQW)和实际量子阱(RQW)的不同结果。最后,研究还指出如果将金属光栅替换成几何参数一致的砷化镓光栅,该结构无法取得良好的吸收效果。

      2015年,Chang和Hu在被金光栅结构包覆的量子阱层上方再添加了一层减反层[24]。减反层能够减少金光栅结构对入射光的反射,最终有减反层的金光栅包覆的量子阱层的吸收效率是无微结构包覆的量子阱层的14倍,是无减反层情况的三倍。进一步地研究发现,可以利用公式${t}_{{\rm{op}}}=\lambda/\left(4{n}_{c}\right)$来估算减反层的最佳厚度,其中nc是减反层的折射率。这种估算方法与实际值的差异小于100 nm,两种情况下增强系数相差仅3%。被理想减反层包覆的量子阱结构,总吸收率能接近空气中薄层吸收率的上限(A=50%)。

    • 由此,文中总结了三种增强探测材料吸收的策略(见图4,分别对应图1中的结构Ⅱ、Ⅲ和Ⅳ),并按照结构Ⅳ,设计了一种强效且宽频的人工微结构HgCdTe红外探测器。它的前端反射镜采用的是二维金属光栅,后端反射镜采用的是整块的金属薄层。二维光栅的周期长度为a = 2 μm,孔洞的长度为Δ,厚度为t1 = 100 nm。金属薄层的厚度为t4 = 100 nm。金属薄层和金属光栅之间,HgCdTe层的厚度为t3 = 310 nm。金的介电常数遵循Drude模型的描述$ \varepsilon =1- \dfrac{{{w}_{p}}^{2}}{w(w+i{w}_{c})} $。其中,等离子体频率设置为${w}_{p}=2\mathrm{\pi }\times 2 175\;\mathrm{T}\mathrm{H}\mathrm{z}$

      Figure 4.  (a) Absorption of QD infrared detector in Ref. [22] with ①③2D grating, ②④1D grating. ①② Absorption in different layer, ③④absorption in active layer with different incident angle. a = 2 μm,Δ/a = 0.7, t 1 = t 4 = 0.1 μm, t 2 = 0.3 μm; (b) Absorption of QW infrared detector in Ref. [24]. ① Absorptivity in different layer, ② absorption enhancement with different structure (IQD, IQW, RQW and GaAs grating). a = 4.6 μm,Δ/a = 0.5,t1 = t2 = 0.2 μm,t3 = 0.4 μm; (c) Absorption of QW infrared detector with antireflection layer in Ref. [25]. ① Absorptivity in different layer, ②absorption enhancement of IQW(black line) and RQW(blue dash line). The parameters is the same as (b) but tc =1.2 μm

      碰撞频率设置为$ {\mathrm{w}}_{c}=2\mathrm{\pi }\times 6.5\;\mathrm{T}\mathrm{H}\mathrm{z} $[21]。HgCdTe介质的复介电常数设置为12.5+1.75i[25],远超过参考文献[22]中模拟量子点探测器所设置的虚部0.5i,同时也与参考文献[24]中模拟量子阱探测器所设置的虚部不同,复介电常数不具有方向性。此外,入射的电磁波垂直于红外探测器的表面,电场指向+y方向(如图2(c)中所示),入射电磁波的波长为λ0

      图5所示,结构Ⅰ厚度较小时在3~6 μm波段吸收不高,当厚度增大到0.8 μm后才有大于50%的吸收。结构Ⅱ相比结构Ⅰ吸收效果提升明显,但是厚度较薄时峰高偏低,峰宽较窄,完美吸收出现在厚度较大的情况。结构Ⅲ与结构Ⅰ相比,峰高提升不明显,但在3~6 μm波段吸收谱分布的更加均匀。结构Ⅳ与结构Ⅱ相反,在较薄的厚度下就有较高的峰高和宽的峰宽。当厚度变大,吸收效果反而变差。

      Figure 5.  Absorption spectra of artificial microstructure HgCdTe infrared detector with different thickness of MCT layer in 3-6 μm. The interface of metal grating (metal film) and dielectric adopt perfect electric conductor (PEC) boundaries. The thickness of metal grating and metal film is ignored. Δ/a = 0.75 is set. Calculation for structure (a)Ⅰ, (b)Ⅱ, (c)Ⅲ, (d)Ⅳ

      310 nm厚的HgCdTe红外探测材料在3~6 μm波段的吸收率约为11~17%。此厚度的HgCdTe薄膜后端增加一层金属薄膜能够将总吸收率提高至80%。当HgCdTe薄膜被放置入非对称的F-P共振腔结构中,对于一个合适的占空比Δ/a = 0.88,总的吸收率可以达到100%。利用每一层功率流密度的差值,能够分析出HgCdTe层的吸收率占总吸收的比重。HgCdTe层的吸收率和总吸收率之间的差别不大。HgCdTe层的最大吸收可以达到96%。

      图6所示,调节光栅的占空比Δ/a能够显著改变吸收峰的宽度。当占空比Δ/a处于0.5~1.0的范围内时,能够观测到明显的吸收峰。当占空比Δ/a为0.88时,吸收峰的峰值达到最高。当占空比Δ/a为0.82时,吸收峰的峰面积最大。

      Figure 6.  (a) The absorption spectrum of MCT layer (red line), total absorption spectrum (black line) and absorption enhancement coefficient (orange dotted line) in the artificial microstructure HgCdTe infrared detector at 3-6 μm wavelength, the thickness of MCT layer is 310 nm. The green line is absorption spectrum of MCT layer without artificial microstructure with the same thickness. The absorption enhancement coefficient is defined as the ratio of MCT layer absorption to reference (green line). The dielectric constant of gold grating layer and gold film layer is described by Drude model, Δ/a = 0.82. (b) The relationship between Δ/a of two dimensional metal grating and absorption of MCT layer

      最终,在Δ/a为0.82时,实现了一个吸收峰峰值为0.91,相对带宽为41.8%的HgCdTe红外探测器。在3.7~5 μm波段,其吸收增强系数均大于6。最高的吸收增强系数为8.4。

    • 人工微结构利用微腔体或者金属和介质界面的等离激元实现光场局域效应,能够极大地增强薄层红外探测材料的吸收。并且,人工微结构能够简单地通过周期、占空比的改变实现吸收带宽的调制。薄层的红外探测材料更易制备,人工微结构的制备工艺还能部分与半导体工艺复用,降低了人工微结构薄层红外探测器投入生产的门槛。最后,人工微结构设计的自由度非常高,结合新材料、新效应地拓展,为红外探测的未来提供了无限可能。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return