Volume 50 Issue 1
Jan.  2021
Turn off MathJax
Article Contents

Liu Zhaoguo, Zhou Huanli, He Weidi, Zhao Ning, Zhang Tong. Development of terahertz detectors with low dimensional materials (Invited)[J]. Infrared and Laser Engineering, 2021, 50(1): 20211015. doi: 10.3788/IRLA20211015
Citation: Liu Zhaoguo, Zhou Huanli, He Weidi, Zhao Ning, Zhang Tong. Development of terahertz detectors with low dimensional materials (Invited)[J]. Infrared and Laser Engineering, 2021, 50(1): 20211015. doi: 10.3788/IRLA20211015

Development of terahertz detectors with low dimensional materials (Invited)

doi: 10.3788/IRLA20211015
  • Received Date: 2020-11-20
  • Rev Recd Date: 2020-12-13
  • Available Online: 2021-01-22
  • Publish Date: 2021-01-22
  • Terahertz technology has broad application prospects in non-destructive testing, biomedicine, industrial inspection, environmental monitoring, local area communications and national defense security. The terahertz detector in the terahertz system is its core component. Its performance determines the application market of the terahertz system and is one of the important research directions to promote the further development of terahertz technology. However, the low photon energy in the terahertz band makes it challenging to achieve high-speed and sensitive terahertz detection. With the advancement of nanotechnology and new material preparation technology, the high mobility and wide response band of low-dimensional materials provide new opportunities for terahertz detectors. Low-dimensional materials terahertz detectors have received extensive attention and their main advantages is high sensitivity, wide frequency band and low noise, and has made significant research progress in recent years. Although terahertz detectors have achieved breakthrough development, there are still some problems with various terahertz detectors. In this context, starting from the classification of terahertz detectors, the physical mechanism and latest research progress of bolometers, pyroelectric detectors, plasmon resonance detectors and hot carrier control detectors were briefly introduced. And look forward to the future development direction of low-dimensional material terahertz detectors.
  • [1] Sizov F, Rogalski A. THz detectors [J]. Progress in Quantum Electronics, 2010, 34(5): 278-347. doi:  10.1016/j.pquantelec.2010.06.002
    [2] Wang R, Xie L, Hameed S, et al. Mechanisms and applications of carbon nanotubes in terahertz devices: A review [J]. Carbon, 2018, 132: 42-58. doi:  10.1016/j.carbon.2018.02.005
    [3] Sizov F. Terahertz radiation detectors: the state-of-the-art [J]. Semiconductor Science and Technology, 2018, 33(12): 123001. doi:  10.1088/1361-6641/aae473
    [4] He Y, Wu Q, Yan S. Multi-band terahertz absorber at 0.1–1 THz frequency based on ultra-thin metamaterial [J]. Plasmonics, 2019, 14(6): 1303-1310. doi:  10.1007/s11468-019-00936-7
    [5] Safian R, Ghazi G, Mohammadian N. Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain [J]. Optical Engineering, 2019, 58(11): 110901.
    [6] Gopalan P, Sensale-Rodriguez B. 2D Materials for terahertz modulation [J]. Advanced Optical Materials, 2020, 8(3): 1900550. doi:  10.1002/adom.201900550
    [7] Wang Y, Wu W, Zhao Z. Recent progress and remaining challenges of 2D material-based terahertz detectors [J]. Infrared Physics & Technology, 2019, 102: 103024.
    [8] He X, Léonard F, Kono J. Uncooled carbon nanotube photodetectors [J]. Advanced Optical Materials, 2015, 3(8): 989-1011. doi:  10.1002/adom.201500237
    [9] Abergel D S L, Apalkov V, Berashevich J, et al. Properties of graphene: a theoretical perspective [J]. Advances in Physics, 2010, 59(4): 261-482. doi:  10.1080/00018732.2010.487978
    [10] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors [J]. Nature Materials, 2012, 11(10): 865-871. doi:  10.1038/nmat3417
    [11] Tomadin A, Polini M. Theory of the plasma-wave photoresponse of a gated graphene sheet [J]. Physical Review B, 2013, 88(20): 205426. doi:  10.1103/PhysRevB.88.205426
    [12] Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials [J]. Nature Nanotechnology, 2014, 9(10): 768-779. doi:  10.1038/nnano.2014.207
    [13] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793. doi:  10.1038/nnano.2014.215
    [14] Viti L, Hu J, Coquillat D, et al. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response [J]. Scientific Reports, 2016, 6: 20474. doi:  10.1038/srep20474
    [15] Lu X, Sun L, Jiang P, et al. Progress of photodetectors based on the photothermoelectric effect [J]. Advanced Materials, 2019, 31(50): 1902044. doi:  10.1002/adma.201902044
    [16] Castilla S, Terres B, Autore M, et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction [J]. Nano Letters, 2019, 19(5): 2765-2773. doi:  10.1021/acs.nanolett.8b04171
    [17] Chen M, Wang Y, Wen J, et al. Annealing temperature-dependent terahertz thermal-electrical conversion characteristics of three-dimensional microporous graphene [J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6411-6420.
    [18] Li H, Wan W J, Tan Z Y, et al. 6.2 GHz modulated terahertz light detection using fast terahertz quantum well photodetectors [J]. Scientific Reports, 2017, 7(1): 1-8. doi:  10.1038/s41598-016-0028-x
    [19] Viti L, Hu J, Coquillat D, et al. Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies [J]. Advanced Materials, 2016, 28(34): 7390-7396. doi:  10.1002/adma.201601736
    [20] Yadav D, Tombet S B, Watanabe T, et al. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures [J]. 2D Materials, 2016, 3(4): 045009. doi:  10.1088/2053-1583/3/4/045009
    [21] Rogalski A, Kopytko M, Martyniuk P. Two-dimensional infrared and terahertz detectors: Outlook and status [J]. Applied Physics Reviews, 2019, 6(2): 021316. doi:  10.1063/1.5088578
    [22] Mittendorff M, Winnerl S, Kamann J, et al. Ultrafast graphene-based broadband THz detector [J]. Applied Physics Letters, 2013, 103(2): 021113. doi:  10.1063/1.4813621
    [23] El Fatimy A, Myers-Ward R L, Boyd A K, et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers [J]. Nature Nanotechnology, 2016, 11(4): 335-338. doi:  10.1038/nnano.2015.303
    [24] Miao W, Gao H, Wang Z, et al. A graphene-based terahertz hot electron bolometer with Johnson noise readout [J]. Journal of Low Temperature Physics, 2018, 193(3-4): 387-392. doi:  10.1007/s10909-018-1972-6
    [25] Viti L, Politano A, Zhang K, et al. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes [J]. Nanoscale, 2019, 11: 1995-2002.
    [26] Liu Z, Liang Z, Tang W, et al. Design and fabrication of low-deformation micro-bolometers for THz detectors [J]. Infrared Physics & Technology, 2020, 105: 103241.
    [27] Ullah Z, Witjaksono G, Nawi I, et al. A review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications [J]. Sensors, 2020, 20(5): 1401. doi:  10.3390/s20051401
    [28] Lewis R A. A review of terahertz sources [J]. Journal of Physics D: Applied Physics, 2014, 47(37): 374001. doi:  10.1088/0022-3727/47/37/374001
    [29] Cai X, Sushkov A B, Suess R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene [J]. Nature Nanotechnology, 2014, 9(10): 814. doi:  10.1038/nnano.2014.182
    [30] Deng X, Wang Y, Zhao Z, et al. Terahertz-induced photothermoelectric response in graphene-metal contact structures [J]. Journal of Physics D: Applied Physics, 2016, 49(42): 425101. doi:  10.1088/0022-3727/49/42/425101
    [31] Leong E, Suess R J, Sushkov A B, et al. Terahertz photoresponse of black phosphorus [J]. Optics Express, 2017, 25(11): 12666-12674. doi:  10.1364/OE.25.012666
    [32] Lin Y J, Jarrahi M. Heterodyne terahertz detection through electronic and optoelectronic mixers [J]. Reports on Progress in Physics, 2020, 83(6): 066101. doi:  10.1088/1361-6633/ab82f6
    [33] Lu P K, Turan D, Jarrahi M. High-sensitivity telecommunication-compatible photoconductive terahertz detection through carrier transit time reduction [J]. Optics Express, 2020, 28(18): 26324-26335. doi:  10.1364/OE.400380
    [34] Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two dimensional van der Waals semiconductors [J]. Chem Soc Rev, 2015, 44: 3691-3718. doi:  10.1039/C5CS00106D
    [35] Tong J, Zhou W, Qu Y, et al. Surface plasmon induced direct detection of long wavelength photons [J]. Nature Communications, 2017, 8(1): 1-9. doi:  10.1038/s41467-016-0009-6
    [36] Liu H, Chen Z, et al. Terahertz photodetector arrays based on a large scale MoSe2 monolayer [J]. Materials Chemistry C, 2016, 4: 9399-9404. doi:  10.1039/C6TC02748B
    [37] Zak A, Andersson M A, Bauer M, et al. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene [J]. Nano Letters, 2014, 14(10): 5834-5838. doi:  10.1021/nl5027309
    [38] Spirito D, Coquillat D, De Bonis S L, et al. High performance bilayer-graphene terahertz detectors [J]. Applied Physics Letters, 2014, 104(6): 061111. doi:  10.1063/1.4864082
    [39] Viti L, Hu J, Coquillat D, et al. Black phosphorus terahertz photodetectors [J]. Advanced Materials, 2015, 27(37): 5567-5572. doi:  10.1002/adma.201502052
    [40] Tong J, Muthee M, Chen S Y, et al. Antenna enhanced graphene THz emitter and detector [J]. Nano Letters, 2015, 15(8): 5295-5301. doi:  10.1021/acs.nanolett.5b01635
    [41] Bianco F, Perenzoni D, Convertino D, et al. Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide [J]. Applied Physics Letters, 2015, 107(13): 131104. doi:  10.1063/1.4932091
    [42] Qin H, Sun J, Liang S, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor [J]. Carbon, 2017, 116: 760-765. doi:  10.1016/j.carbon.2017.02.037
    [43] Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material based photodetectors [J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi:  10.1002/adfm.201803807
    [44] Li Y, Zhang Y, Chen Z, et al. Room-temperature broadband terahertz detector based on three-dimensional graphene[C]//Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XIII. International Society for Optics and Photonics, 2020, 11279: 1127914.
    [45] Tang Weiwei, Politano A, Guo Cheng, et al. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator [J]. Advanced Functional Materials, 2018, 28(31): 1801786. doi:  10.1002/adfm.201801786
    [46] Wang L, Liu C, Chen X, et al. Toward sensitive room‐temperature broadband detection from infrared to terahertz with antenna-integrated black phosphorus photoconductor [J]. Advanced Functional Materials, 2017, 27(7): 1604414. doi:  10.1002/adfm.201604414
    [47] Liu C, Wang L, Chen X, et al. Room-temperature high-gain long-wavelength photodetector via optical-electrical controlling of hot carriers in graphene [J]. Advanced Optical Materials, 2018, 6(24): 1800836. doi:  10.1002/adom.201800836
    [48] Wang L, Wang J, Liu C, et al. Distinctive performance of terahertz photodetection driven by charge-density-wave order in CVD-grown tantalum [J]. Advanced Functional Materials, 2019, 29(45): 1905057.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(1)

Article Metrics

Article views(781) PDF downloads(186) Cited by()

Related
Proportional views

Development of terahertz detectors with low dimensional materials (Invited)

doi: 10.3788/IRLA20211015
  • Joint International Research Laboratory of Information Display and Visualization, School of Electronics Science and Engineering, Southeast University, Nanjing 210096, China

Abstract: Terahertz technology has broad application prospects in non-destructive testing, biomedicine, industrial inspection, environmental monitoring, local area communications and national defense security. The terahertz detector in the terahertz system is its core component. Its performance determines the application market of the terahertz system and is one of the important research directions to promote the further development of terahertz technology. However, the low photon energy in the terahertz band makes it challenging to achieve high-speed and sensitive terahertz detection. With the advancement of nanotechnology and new material preparation technology, the high mobility and wide response band of low-dimensional materials provide new opportunities for terahertz detectors. Low-dimensional materials terahertz detectors have received extensive attention and their main advantages is high sensitivity, wide frequency band and low noise, and has made significant research progress in recent years. Although terahertz detectors have achieved breakthrough development, there are still some problems with various terahertz detectors. In this context, starting from the classification of terahertz detectors, the physical mechanism and latest research progress of bolometers, pyroelectric detectors, plasmon resonance detectors and hot carrier control detectors were briefly introduced. And look forward to the future development direction of low-dimensional material terahertz detectors.

  • 太赫兹波位于红外与微波之间,频率为0.1~10 THz(30~3000 µm)。由于太赫兹波独特的光电特性,太赫兹技术在无损检测、生物医学、工业检查、环境监测、局域通信和国防安全等领域具有广阔的应用前景。但在很长一段时间里,由于缺少高效的太赫兹辐射源和探测器,人们对太赫兹的性质了解十分有限,被称为“太赫兹空白”[1-5]。20世纪80年代以来,飞秒皮秒激光源、超快电子学技术和半导体技术工艺等的迅速发展,极大地促进了太赫兹辐射产生、探测和应用技术的研究。太赫兹探测器是太赫兹系统的核心,在太赫兹技术广阔市场前景的推动下具有很好的发展机遇,但同时对高性能太赫兹探测器的需求也逐渐增大。制备高性能的太赫兹探测器需要合适的材料,近年来随着纳米技术的发展,制备太赫兹探测器由传统半导体材料向具有优秀性质的低维材料上发展,如具有高迁移率的石墨烯材料、黑磷和其他低维材料[6-9]。文中主要从低维材料特性和太赫兹探测器器件角度出发,阐述了低维材料太赫兹探测器的最新进展和研究趋势,为制备高性能的太赫兹探测器提供思路。

    • 纳米技术和新材料制备技术的进步促进了太赫兹探测器发展,尤其是低维材料在太赫兹探测器上的应用引起了国内外的高度重视[10-11]。低维材料由于其独特的光电性质,构成了多种探测机制的太赫兹探测器。以下阐述主要的低维材料太赫兹探测器分类和重要的性能指标。

    • 太赫兹辐射可以引起材料物理性质改变,如:集体电子的迁移和电子的跃迁等,从机理上大致可以分为光热探测器和光电探测器[12-13]。其中光热探测器是将吸收的太赫兹辐射转化为探测器的物理性质或电学特性,主要有测辐射热计(Bolometer)[14]和热释电探测器(PTE)[15]。光热探测器的优势在于较宽的光谱范围,但是灵敏度较低,响应速度较慢。光电探测器通过吸收太赫兹波改变探测器内部电子状态,将吸收的光辐射转变为可测量的电信号,再将信号进行混频,放大等处理来实现太赫兹波的探测。因为电信号的传输速率大于热传递速率,所以光电探测器响应速度普遍高于光热探测器。光电探测器主要有等离子体共振探测器(Plasma wave rectification)[16-18]和光热载流子调控探测器(Hot carrier-assisted)[19-20]。太赫兹探测器最常见的器件结构就是场效应晶体管器件,图1(a)所示为常见太赫兹探测器的器件结构,由硅衬底、二氧化硅绝缘层、低维材料形成的沟道以及源、栅、漏极组成。图1(b)、(c)分别为辐射热效应和等离子体共振效应的物理机制示意图。图中S、G、D分别表示场效应晶体管中的源极、栅极和漏极。红色阴影区域表示电子温度升高,ΔT表示温度梯度,ΔR表示通道电阻。图1(b)中,入射光子加热将会引起传输电导的变化。图1(c)中,太赫兹辐射引起了沟道中的等离子体共振效应。

      Figure 1.  Common schematic diagram of low-dimensional material terahertz detector structure and diagrams of two common physical mechanisms

    • 太赫兹探测器主要性能指标有:响应度、响应时间、噪声等效功率、探测效率[8]

    • 响应度定义为单位光功率产生的光电流$ {I}_{P} $或光电压$ {V}_{P} $,表示为:

      式中:$ P $为光功率。$ P $有两个定义:入射功率和吸收功率。入射功率是辐射到设备有效区域上的光功率;吸收功率是设备实际吸收的光功率。

    • 响应时间$ T $反映了太赫兹探测器的探测速度,器件将太赫兹辐射转换成稳定的光电流或停止光照后光电流衰减到一定程度的时间就是响应时间。它包括上升时间$ {T}_{1} $和下降时间$ {T}_{2} $,通常定义为光电流从10% (90%)上升(衰减)到90% (10%)所需的时间。

    • $ NEP $为光电探测器可以与总噪声区分开的最小辐射功率。这是太赫兹探测器最重要的参数之一,定义为探测器的信噪比(SNR)为1时的输入光功率。表达式为:

      式中:P1为入射光功率;Δf为工作带宽。噪声等效功率越低,探测器的性能越好。

    • 在不同类型的太赫兹探测器的比较中,$ {D}^{*} $为表征光电探测器灵敏度的重要参数,该参数反映了光探测器的探测能力。

      式中:A为器件有效面积;Δf为工作带宽;NEP为噪声等效功率。

    • 低维材料具有出色的物理性能,目前有多种可以实现灵敏检测的太赫兹探测器,主要有测辐射热计、热释电探测器、等离子体共振探测器、光热载流子调控探测器等[21]。本节将简要分析其机理,并介绍各类探测器的发展历程和最新进展。

    • 测辐射热计常用于太赫兹探测中,该器件中载流子的迁移率会随着温度的变化而变化,可以理解为一个安装在电桥中的热敏电阻,当太赫兹波辐射到热敏电阻上时,变化的电阻可表征太赫兹辐射强度。该探测器包含辐射吸收器、温度计、热链路和散热器。辐射吸收器用来吸收和存储太赫兹辐射的能量;温度计将存储下来的热能转换为可以进行记录的电信号;散热器保持器件温度稳定。

      2013年,Mittendorff等人展示了一种在室温下工作的天线耦合石墨烯测辐射热计,实现了从8.3 μm到151 μm的宽带探测,响应时间短至50 ps,光响应度可达几nA·W−1[22]

      但为解决传统石墨烯中电阻率与温度的弱相关性问题,2016年,Fatimy等人在碳化硅上外延石墨烯制成量子点,由于量子限制,电阻随温度变化非常大,电阻在6 K以下,电阻与温度的比值高于430 MΩ·K−1,如图2(b)所示[23]。该器件响应度为1×1010 V·W−1,这一数字比其他类型的石墨烯热电子辐射热计高出5个数量级。噪声等效功率约为2×10−16 W·Hz−1/2,可以看出加入量子点后测辐射热计性能远高于商用冷却测辐射热计。图2(d)为不同温度下该器件在0.15 THz辐射下的电压变化。为了进一步提升石墨烯中电阻随温度的变化,进而提高探测器灵敏度,2018年,Miao等人设计了一种基于石墨烯的热电子辐射热计,如图2(a)所示[24]。该器件在0.3~1.6 THz的频率范围内有较高的耦合效率,在3 K下工作时,NEP低至5.6×10−12 W·Hz−1/2图2(c)显示了不同温度下NEP的变化范围。实验还可通过对不同浴温下的辐射热测量,发现噪声等效功率受热扩散的限制很大,表明如果可以减少电子扩散,则辐射热计的性能可以进一步提高。

      Figure 2.  THz bolometers and test results[23-24]

      辐射热计的响应几乎不依赖于光子能量的大小,因此辐射热计可以实现宽带光检测。但是,具有高响应度的辐射热计通常必须在低温下才可以工作,并且测辐射热计在高辐射功率下会达到饱和,这对其实用化产生障碍。

    • 太赫兹辐射除了产生辐射热效应,也会引起热释电效应。热释电效应的本质是塞贝克效应,而不是温度引起了器件中的电阻变化[25-28]。当导体和半导体两端具有温差时,热端的载流子相比冷端具有更高的能量和更大的速度。因此,载流子会从热端扩散到冷端,形成两端的电势差,不同的电势差就反映了不同的太赫兹辐射强度,如图3(a)所示。热释电探测器的灵敏度取决于探测器中材料塞贝克系数的大小。

      Figure 3.  Mechanism, devices and test results of pyroelectric detectors[30-31]

      2014年,Cai等人报道了一种采用非对称电极的石墨烯热释电太赫兹探测器,该探测器在室温下的灵敏度为700 V·W−1,等效噪声功率为20 pW·Hz−1/2,并且预计在增加天线耦合吸收后,灵敏度有两个数量级的提升空间[29]。Deng等人在2016年发现石墨烯金属接触结构在太赫兹激发下,由于石墨烯通道上的非对称热分布,在室温下有明显的光响应[30]。他们设计了一种结构非常简单的探测器,由一个大面积单层石墨烯条纹与两个金电极接触组成。在太赫兹辐射激发下,器件上观察到明显的光电压,且与入射光功率呈线性关系,如图3(b)所示。通过对实验和热释电模型的研究,他们得出较长沟道会导致更强但较慢的响应,而热导率较大的衬底则会导致较弱但更快响应的结论,为优化类似结构的石墨烯太赫兹探测器提供了方法。除了石墨烯之外,其他低维材料也具备高性能太赫兹探测的潜力。例如,黑磷具有很高的载流子迁移率,即使光子能量远低于带隙能量也可以有效地吸收太赫兹辐射,并具有受载流子散射限制的快速响应。2017年,Leong等人利用多层黑磷薄片制造了一种超高速响应太赫兹探测器,如图3(c)所示[31]。该器件中热释电效应是产生信号的主要来源,当使用脉冲太赫兹源进行检测时,测得响应度为0.9 mV·W−1,响应时间为20 ps。

      热释电效应可以实现室温下低功耗和超宽带的太赫兹探测。但是,实现器件的温度差通常需要复杂的制造过程和额外功耗,而且此类器件中的光电压通常很小,对制备高灵敏度的探测器是一种限制。

    • Dyakonov和Shur在1990年代首次提出利用等离子体共振来实现太赫兹信号探测的方法。当太赫兹辐射的频率远小于电子的散射速率时,场效应管(FET)通道中的二维电子气可以类比为声波,并遵循流体力学定律,形成等离子波,如图4(a)所示。如果场效应管的边界条件满足源极短路和漏极开路,则通道中电磁场激发的等离子波将在源极和漏极之间形成直流信号,进而检测出太赫兹辐射的强度。在这类探测器中迁移率对器件的性能起到关键作用,而低维材料如石墨烯、黑磷等都可以提供通道中需要的二维电子气且具有很高的迁移率,可以提升探测器响应度和响应时间等性能[32-36]

      Figure 4.  Plasma wave rectification THz detectors and test results[37, 41]

      2014年,Zak等人首次成功研制含有分离式天线的高灵敏度石墨烯场效应管(GFET)探测器,该器件可以在室温下对0.6 THz信号进行整流,如图4(c)所示,其最大光响应度大于14 V·W−1,最小光噪声等效功率为515 pW·Hz−1/2,其中插图反映了GFET在不同栅极偏置下的噪声频谱密度[37]。他们通过研究还发现,之前开发的分布式电阻混合机制模型不足以全面描述石墨烯太赫兹场效应管探测的物理过程,需要对其内部机理进行进一步研究。Spirito等人设计了一种基于等离子体共振的双层石墨烯场效应晶体管的太赫兹探测器,通过采用宽栅极或埋入式栅极结构,在0.29-0.38 THz范围内,该器件响应度为1.2 V·W−1(1.3 mA·W−1),噪声等效功率约为2×10−9 W·Hz−1/2。该研究表明,提高石墨烯的迁移率可以使器件具有更高的响应度,为提升石墨烯探测器性能提供了思路[38]。2015年,Viti等人设计了一种利用二维黑磷制成栅极,并集成了非对称的太赫兹天线来进一步提升其灵敏度[39]。最大响应度可达0.15 V·W−1,略高于在相同几何尺寸下制造的双层石墨烯FET中所实现的响应度,且噪声等效功率最小可达40 nW·Hz−1/2,接近双层石墨烯太赫兹探测器的性能。研究还发现该器件的响应度不受固有噪声和带间迁移的影响。2016年,他们通过进一步研究,利用二维黑磷材料电热的各向异性设计出可以切换等离子波共振、热释电和辐射热工作机制的太赫兹探测器,证明了黑磷在完全可切换响应太赫兹探测器方面的潜力[25]。器件与平面纳米天线一起集成在芯片上可在室温下运行,响应度达到5~8 V·W−1。Tong等人在2015年设计了集成的石墨烯-天线-硅透镜系统,该系统由双贴片天线和片上硅透镜增强的石墨烯场效应晶体管(GFET)制成THz源和探测器,由于天线增强了耦合,探测器性能有显著改进,最大响应率为4.9 V·W−1,相比之前太赫兹探测器提高了4个数量级,噪声等效功率在峰值响应率下达到1.7 nW·Hz−1/2,推动了石墨烯太赫兹探测向商业化发展[40]。由于场效应管太赫兹探测器中的物理机制并不单一,如何抑制其他机制,一直是人们研究的重点。Bianco等人在碳化硅的硅面上外延生长石墨烯天线,增强了光的吸收效率,该器件光响应度为0.25 V·W−1,噪声等效功率为80 nW·Hz−1/2。通过光响应分析显示出器件中有俩种竞争性的探测机制:由于电子传输非线性引起的等离子体共振和由于载流子密度结的存在以及整个通道的感应温度梯度引起的热释电效应[41]。如图4(b)所示,图中蓝色曲线和红色曲线分别表示不同栅极电压下等离子体共振效应和热释电效应引起的电压变化量。通过对实验数据的分析可知,即使受到热释电响应的强烈抵消,等离子体共振效应仍是场效应管器件在太赫兹辐射下产生光响应的主要原因。2017年,Hua等人提出了一种基于双层石墨烯场效应晶体管(GFET)的直接太赫兹探测器,双层石墨烯在碳化硅上外延生长,其载流子迁移率达到3000 cm2·Vs−1,高质量的欧姆接触和短的石墨烯沟道使得总源漏电阻小于203 Ω[42]。在0.33 THz的直接检测中,该器件响应度为30 V·W−1,噪声等效功率为163 pW·Hz−1/2

    • 近年来,热载流子调控太赫兹探测器多样性的结构和新型二维材料的引入展现出了优异的性能,逐渐成为大家研究的热点[43-45]。2017年,Wang等人首次在黑磷太赫兹探测器中观察到了十分强烈的光响应,在15 mW的太赫兹辐射下,电阻变化超过了10 Ω,而该电阻变化比辐射热引起的电阻变化大了几个数量级,因此该现象并不是由于辐射热效应导致的。他们提出了一种称为热载流子调控的光电导效应,该效应是指入射辐射会与沟道中的热载流子发生耦合,光热载流子的定向移动产生了可测量的光信号[46]。他们设计了一种基于黑磷的高性能探测器,具有超宽带检测功能,该探测器的噪声等效功率小于1 nW·Hz−1/2。他们还发现通过引入等离子体接触可以抑制暗电流并增强光子吸收。2018年,Liu等人提出了一种新颖的高增益太赫兹探测器,利用基于石墨烯有源通道中产生的电势梯度,从而捕获和释放从低电阻Au-石墨烯界面横向转移的电荷,最终导致高光电导增益[47]图5(a)为探测器的结构示意图,该器件由含有对数天线的双指栅场效应管构成。图5(b)为器件的物理机制。在室温下,该器件的响应度为0.6~6.0 kV·W−1,等效噪声功率小于0.1 nW·Hz−1/2,如图5(c)所示。随着二维材料异质结制备工艺的提升,基于二维材料异质结的太赫兹探测器也成为了研究热点。2019年,Wang等人设计了基于金属-TaSe2-金属结构的太赫兹探测器,如图5(d)所示[48]。在表面等离激元局部场增强下可以产生超过40 A·W−1的光电流响应,噪声等效功率低于1 pW·Hz−1/2

      综上所述,近年来四类主要的太赫兹探测器有诸多进展,在重要指标上有明显进步,表1中列举了代表性的探测器指标。

      Figure 5.  Hot carrier regulated terahertz detector device, mechanism and test results[47-48]

      MechanismMaterialFrequencyResponsivityResponse timeNEPRef.
      BolometerGraphene2 THz8 nA/W50 ps[22]
      BolometerGraphene0.15 THz1×1010 V/W<2.5 ns0.2 fW/Hz1/2[23]
      BolometerBP0.3 THz7.8 V/W<1 ms4 nW/Hz1/2[25]
      PTEGraphene2.52 THz>10 V/W110 ps1.1 nW/Hz1/2[29]
      PTEGraphene2.52 THz8.4 mV/W5 μs[30]
      PTEBP0.3 THz0.9 mV/W20 ps[31]
      Plasma wave rectificationMoSe20.29 THz38 mV/W6.6×10-6 W/Hz1/2[36]
      Plasma wave rectificationGraphene0.6 THz14 V/W<30 μs515 pW/Hz1/2[37]
      Plasma wave rectificationGraphene0.3 THz1.2 V/W<2.5 ms2 nW/Hz1/2[38]
      Plasma wave rectificationBP0.26-0.38 THz0.15 V/W40 nW/Hz1/2[39]
      Plasma wave rectificationGraphene0.23-0.375 THz0.25 V/W<1.2 ms80 nW/Hz1/2[42]
      Hot carrier-assistedBi2Se30.3 THz>10 V/W60 μs0.36 pW/Hz1/2[46]
      Hot carrier-assistedBP0.15 THz300 V/W4 μs1 nW/Hz1/2[47]
      Hot carrier-assistedTaSe20.3 THz40 A/W<1 pW/Hz1/2[48]

      Table 1.  List of typical performance index of low dimensional terahertz devices

    • 文中从太赫兹探测器的分类出发,简要介绍了不同探测器的物理机制并回顾了各类低维材料太赫兹探测器的研究进展。低维材料太赫兹探测器主要可以分为测辐射热计、热释电探测器、等离子体共振探测器、热载流子调控太赫兹探测器等。测辐射热计和热释电探测器的物理机制属于光热效应,可以实现宽带光检测,但这类器件的光电压通常较小,限制了探测器灵敏度的提高。基于场效应晶体管的太赫兹探测器是近年来的研究热点,但其内部存在机理尚不明确的多种物理效应,如何利用低维材料的材料特性,优化器件结构从而提高器件性能,是下一步的研究重点。热载流子调控太赫兹探测器需要不断利用更加优异的二维材料和异质结等结构来提升器件的性能。

      低维材料太赫兹探测器的性能还有待提高,离器件的大规模使用仍有一定距离。笔者认为以下几点是未来的重要研究方向:

      (1)低维材料的机理研究仍需要进一步的探索,如何有效控制场效应管太赫兹探测器中的竞争机制是提升该器件性能的关键。另外如何利用天线耦合,等离激元等效应来提高探测器的响应度也需要更深入的探究。

      (2)要继续探索新的二维材料,石墨烯和黑磷等二维材料虽然有很广泛的应用场景,但是光吸收率低和暗电流大等问题影响了它们的发展,需要了解更多新型二维材料的特性,突破单一材料的限制,制备性能优异的新型太赫兹探测器。

      (3)太赫兹探测器的结构和工艺仍需要优化,如器件的应力匹配、栅极结构的优化等。制备出可大规模集成化的室温太赫兹探测器是实用化的关键。

Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return