Volume 50 Issue 7
Jul.  2021
Turn off MathJax
Article Contents

Sun Shihao, Cai Xinlun. High-performance thin-film electro-optical modulator based on heterogeneous silicon and lithium niobate platform (Invited)[J]. Infrared and Laser Engineering, 2021, 50(7): 20211047. doi: 10.3788/IRLA20211047
Citation: Sun Shihao, Cai Xinlun. High-performance thin-film electro-optical modulator based on heterogeneous silicon and lithium niobate platform (Invited)[J]. Infrared and Laser Engineering, 2021, 50(7): 20211047. doi: 10.3788/IRLA20211047

High-performance thin-film electro-optical modulator based on heterogeneous silicon and lithium niobate platform (Invited)

doi: 10.3788/IRLA20211047
  • Received Date: 2021-04-12
  • Rev Recd Date: 2021-06-10
  • Publish Date: 2021-07-25
  • Silicon photonic integration platform has attracted extensive attention in the field of optical communication due to its high integration and CMOS process compatibility. As one of the most important devices in optical communication system, electro-optic modulator plays a key role in loading electrical signals onto optical signals. To break the performance limitation of silicon-based modulator, the large-area bonding technology of silicon and lithium niobate and the low loss waveguide etching technology of lithium niobate can be used to achieve high-performance thin film electro-optic modulator based on heterogeneous silicon and lithium niobate platform. At present, this kind of modulator with the best performance exhibits a half-wave voltage of 3 V, a 3 dB electro-optical bandwidth of more than 70 GHz, an insertion loss of less than 1.8 dB, and an extinction ratio of more than 40 dB. In this paper, the research status of integrated modulator based on silicon and lithium niobate heterogeneous platform was compared and the structure design and fabrication process of the heterogeneous integrated thin-film modulator were introduced respectively.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1265) PDF downloads(267) Cited by()

Related
Proportional views

High-performance thin-film electro-optical modulator based on heterogeneous silicon and lithium niobate platform (Invited)

doi: 10.3788/IRLA20211047
  • State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China

Abstract: 

Silicon photonic integration platform has attracted extensive attention in the field of optical communication due to its high integration and CMOS process compatibility. As one of the most important devices in optical communication system, electro-optic modulator plays a key role in loading electrical signals onto optical signals. To break the performance limitation of silicon-based modulator, the large-area bonding technology of silicon and lithium niobate and the low loss waveguide etching technology of lithium niobate can be used to achieve high-performance thin film electro-optic modulator based on heterogeneous silicon and lithium niobate platform. At present, this kind of modulator with the best performance exhibits a half-wave voltage of 3 V, a 3 dB electro-optical bandwidth of more than 70 GHz, an insertion loss of less than 1.8 dB, and an extinction ratio of more than 40 dB. In this paper, the research status of integrated modulator based on silicon and lithium niobate heterogeneous platform was compared and the structure design and fabrication process of the heterogeneous integrated thin-film modulator were introduced respectively.

  • 随着5G、虚拟现实、万物互联、大数据以及人工智能等技术的兴起,当今全球信息传输总量仍然呈现爆发式的增长,光纤通信网络因其无比巨大的通信容量承担着信息传输的主要责任。在急速增长的需求下,未来光纤通信系统必将趋于实现低功耗、低成本以及高集成度的光子芯片集成化。在众多光子集成平台中,硅基光子集成平台因其高集成度以及与大规模CMOS工艺的兼容性带来的低成本等优势受到了极大的重视。而作为光通信系统中电光信号转换的关键器件,硅基电光调制器在过去的十年里取得了巨大的研究进展。然而不幸的是由于硅中的电光调制主要依赖的自由载流子色散效应[1]具有吸收性以及非线性,这些固有的特性大大限制了调制器的带宽和损耗,目前基于硅基光子学的电光调制器性能或多或少已经接近于其物理极限,而硅和铌酸锂异质集成平台为进一步提升硅上电光调制器性能提供了一个很好的解决方案。铌酸锂是一种非常优质的电光材料,其具备极低的光吸收损耗以及高效的线性电光效应,然而传统铌酸锂体调制器调制效率低、体积较大并不满足现阶段高集成度及低成本的要求,近年来,随着铌酸锂中的直接键合以及离子切割技术的大力发展,绝缘体上铌酸锂薄膜(LNOI)[2]材料的出现以及铌酸锂亚微米波导刻蚀技术[3]的引入大大提高了铌酸锂调制器的集成度以及各方面的性能。哈佛大学于2018年成功展示了半波电压小于1.4 V,电光带宽约为40 GHz的高性能铌酸锂薄膜调制器[4],这标志着相比于硅材料,铌酸锂在实现高性能电光调制器中更具有优势。

    2018年,美国UCSD的Peter O. Weigel等人利用直接键合的方法将铌酸锂薄膜材料与SOI芯片相结合并演示了马赫-增德行波电极调制器[5],尽管该器件展示了高达106 GHz的3 dB电光带宽,但由于其波导结构为硅波导及顶部铌酸锂薄膜构成,光模式只有部分位于铌酸锂区域,因此该调制器的VπL仅为6.7 V∙cm。2019年,中山大学蔡鑫伦教授团队利用硅和铌酸锂BCB键合技术以及低损耗铌酸锂波导刻蚀技术成功实现了片上插入损耗小于2.5 dB,消光比达到40 dB,VπL可达2.22 V∙cm,电光带宽超过70 GHz的高性能铌酸锂薄膜调制器[6]。该方法的实现为硅上高性能电光调制器以及未来片上光通信系统开辟了一条新的解决方案与思路。

    图1(a)所示,这种异质集成强度调制器所采用构型为行波电极式马赫-增德结构,整体器件由三部分组成:第一部分为硅基无源输入输出光回路,主要由浅刻蚀光栅耦合器、3 dB多模干涉耦合器和光波导构成;第二部分为高速相位调制区域,由铌酸锂直波导和行波电极构成,如图1(b)所示,该电极所采用结构为可以形成推挽结构的地-信号-地构型;第三部分为垂直方向上的绝热渐变耦合器(VAC),该耦合器由硅反向锥化结构和叠加在其上方的铌酸锂波导构成,可为光在两种材料的波导之间提供高效率的耦合。硅和铌酸锂异质集成调制器的工艺难点集中在如何实现高质量键合薄膜以及低损耗铌酸锂波导,由于该异质集成结构需要首先在SOI上制作硅波导,而直接键合的方法对键合晶片表面的平整度以及洁净度要求较高,因此此处所采用的的键合技术为以BCB为键合介质层的间接键合方法。在制作完成SOI基片以后,可在其上表面旋涂BCB然后将合适尺寸的商用LNOI(晶正集团)基片贴至SOI基片之上并进行高温退火固化,然后通过结合机械减薄、干法刻蚀、湿法刻蚀工艺去除LNOI结构中的硅和氧化硅衬底以裸露铌酸锂薄膜,最后进行铌酸锂波导以及行波电极的制作,铌酸锂波导和电极的横截面可见图1(c),整个芯片实物图可见图1(d)。铌酸锂的波导刻蚀方法采用基于氩气等离子体的电感耦合等离子体(ICP)物理刻蚀方法,以HSQ电子胶作为刻蚀掩膜,所制作的铌酸锂波导损耗可以低至0.15 dB/cm。

    Figure 1.  Hybrid silicon and lithium niobate electro-optical modulator. (a) Schematic of Mach-Zender intensity modulator; (b) SEM image of lithium niobate phase modulation region; (c) The cross section SEM image of the modulation region, the section is formed by the focused ion beam process; (d) Image of the whole chip

    中山大学蔡鑫伦课题组通过持续性的研究对该类调制器的性能进行了进一步的提升,通过对工艺方法以及波导、电极结构的优化,成功将调制器的性能提升至半波电压3 V,电光带宽超过70 GHz,片上插入损耗小于1.8 dB,并在此器件上演示了传输速率高达128 Gbit/s的PAM-4格式数据加载实验。此外,基于硅基光子学中稳定高效的热光效应制作了由薄膜加热电阻和硅波导构成的热调移相器实现调制器偏置点控制功能,该方法避免了在铌酸锂波导上施加直流偏压带来的偏置点漂移现象,测试结果反映该调制器具备良好的工作点稳定性[7]。该调制器多项性能处于世界领先水准,打破了高端薄膜电光调制器方面国外的技术垄断。

Reference (7)
WeChat followshare

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return