Volume 51 Issue 11
Nov.  2022
Turn off MathJax
Article Contents

Lv Jianwei, Wang Linghua, Su Sheng, Song Xin, Liu Xin, Song Boyang. Thermal control design and simulation of micro star sensor[J]. Infrared and Laser Engineering, 2022, 51(11): 20220116. doi: 10.3788/IRLA20220116
Citation: Lv Jianwei, Wang Linghua, Su Sheng, Song Xin, Liu Xin, Song Boyang. Thermal control design and simulation of micro star sensor[J]. Infrared and Laser Engineering, 2022, 51(11): 20220116. doi: 10.3788/IRLA20220116

Thermal control design and simulation of micro star sensor

doi: 10.3788/IRLA20220116
  • Received Date: 2022-04-10
  • Rev Recd Date: 2022-06-10
  • Publish Date: 2022-11-30
  • In order to ensure the normal operation of the star sensor during the on-orbit mission of the application platform, it needs to be thermally designed. First, a process of thermal analysis and optimization was proposed, which combined with the conditions of the external heat flow, installation layout and working mode of the micro star sensor assembly. In the process of thermal analysis optimization, the influence of various factors, such as optical, mechanical and thermal, was considered. Second, a thermal control scheme of the micro star sensor assembly was designed. The thermal control scheme proposed a design idea of using active electric heating and homogenizing the temperature between the light-shield and the star sensor body, which solved the problems of complex space thermal environment, higher temperature control requirements, and heat dissipation path limited by a installation structure during the on-orbit period of the micro star sensor module. This scheme ensured the effective and reliable work of the micro star sensor assembly. Third, an I-DEAS/TMG finite element mode was established. The thermal control simulation of the micro star sensor assembly under high and low temperature conditions was carried out, and the simulation results of the temperature distribution and uniformity of the star sensor assembly were analyzed. Finally, a ground test was carried out to ensure the correctness of the thermal control scheme, and the test results met the thermal requirement of the star sensor assembly. This paper can provide a reference for the following thermal design of micro star sensor assembly of on-orbit platforms.
  • [1] Zhu Junqing, Sha Wei, Fang Chao, et al. Parametric modeling aided design for star sensor lens [J]. Chinese Optics, 2021, 14(3): 615-624. (in Chinese) doi:  10.37188/CO.2021-0029
    [2] Zhang Hui, Zhou Xiangdong, Wang Xinmei, et al. Survey of technology status and development of all-time star sensors in near-earth space [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 6219. (in Chinese)
    [3] 闵桂荣, 郭舜, 航天器热控制(第二版) [M]. 北京: 科学出版社, 1998.

    Min G R, Guo S. Thermal Control of Spacecraft[M]. 2nd ed. Beijing: Science Press, 1998. (in Chinese)
    [4] Liu Haibo, Tan Jichun, Hao Yuncai, et al. Effect of ambient temperature on star sensor measurement accuracy [J]. Opto-Electronic Engineering, 2008, 35(12): 40-44. (in Chinese)
    [5] Yu Chengwu, Sui Jie, Chen Chao, et al. Thermal design and verification of multi-head very high accuracy star sensor onboard GF-7 satellite [J]. Spacecraft Engineering, 2022, 29(3): 144-150.
    [6] Jiang Fan, Wang Zhongsu, Chen Liheng, et al. Thermal design of star sensor assembly [J]. Infrared and Laser Engineering, 2014, 43(11): 3740-3745. (in Chinese)
    [7] Jiang Fan, Wu Qingwen, Liu Ju, et al. Thermal design of lightweight space remote sensor integrated with satellite in low earth orbit [J]. Chinese Optics, 2013, 6(2): 237-243. (in Chinese)
    [8] Sun Peng, Zhao Xin, Liu Wei, et al. Temperature control method and test verification for integrated star sensor [J]. Spacecraft Engineering, 2018, 27(2): 119-123. (in Chinese) doi:  10.3969/j.issn.1673-8748.2018.02.018
    [9] Wang Zhen, Wei Xinguo, Zhang Guangjun. Structure optimization for multi -FOV star sensors [J]. Infrared and Laser Engineering, 2011, 40(12): 2469-2473. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(2)

Article Metrics

Article views(132) PDF downloads(45) Cited by()

Related
Proportional views

Thermal control design and simulation of micro star sensor

doi: 10.3788/IRLA20220116
  • 1. China Academy of Launch Vehicle Technology, Beijing 100076, China
  • 2. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
  • 3. Capital Aerospace Machinery Corporation Limited, Beijing 100076, China

Abstract: In order to ensure the normal operation of the star sensor during the on-orbit mission of the application platform, it needs to be thermally designed. First, a process of thermal analysis and optimization was proposed, which combined with the conditions of the external heat flow, installation layout and working mode of the micro star sensor assembly. In the process of thermal analysis optimization, the influence of various factors, such as optical, mechanical and thermal, was considered. Second, a thermal control scheme of the micro star sensor assembly was designed. The thermal control scheme proposed a design idea of using active electric heating and homogenizing the temperature between the light-shield and the star sensor body, which solved the problems of complex space thermal environment, higher temperature control requirements, and heat dissipation path limited by a installation structure during the on-orbit period of the micro star sensor module. This scheme ensured the effective and reliable work of the micro star sensor assembly. Third, an I-DEAS/TMG finite element mode was established. The thermal control simulation of the micro star sensor assembly under high and low temperature conditions was carried out, and the simulation results of the temperature distribution and uniformity of the star sensor assembly were analyzed. Finally, a ground test was carried out to ensure the correctness of the thermal control scheme, and the test results met the thermal requirement of the star sensor assembly. This paper can provide a reference for the following thermal design of micro star sensor assembly of on-orbit platforms.

    • 星敏感器是以光敏感元件为核心的光电转换电子测量系统,是长期在轨航天器的重要单机设备[1-2]。为了保证星敏感器正常工作,需采取合理热控措施,控制星敏的热交换,使其工作在规定的温度范围内[3]

      某平台的微型星敏具有小型一体化的特点,它的安装方式不是直接安装在航天器主体结构上,而是通过支架安装在平台主结构上,且整体暴露在舱外,星敏组件受到空间热环境的影响比较剧烈;同时该微型星敏由于受到空间位置、以及自身结构布局的限制,在设计过程中还需考虑星敏热控措施实施的难度[4]

      因此,在热设计的思路上需采取对星敏进行集成分析的方法[5-6],既需考虑星敏组件光学系统的自身特点[7-8],同时要结合星敏感器结构安装、空间环境、布局特点等影响因素[9],利用热分析软件,建立了分析模型,对星敏的热设计进行仿真和地面验证,验证热控措施对其吸收的复杂变化外热流进行有效的疏导和控制,最终满足星敏工作温度要求。

    • 星敏组件热控设计及优化流程结合星敏组件热控需求,既要考虑星敏组件光学系统的自身特点,也要考虑星敏组件的空间热环境、结构安装布局、工作模式等影响因素,具体设计优化流程如图1所示。

      热分析贯穿整个热设计阶段。初步设计阶段,星敏组件具体的温度指标是暂定的,需结合初步热环境、星敏组件结构等因素,明确热控需求,通过集成一体化设计后确定最终的热控系统设计指标;在详细设计阶段,进一步结合空间环境外热流、布局安装、热控实施等要素影响,迭代分析直到星敏组件满足温度指标、安装等要求,并通过热平衡试验验证。

      Figure 1.  Design and optimization process

    • 星敏感器组件由星敏感器和支架组成。星敏感器由遮光罩和本体组成,材料为铝合金,遮光罩内表面喷黑漆εH≥0.85;遮光罩外表面与星敏本体外表面的产品状态为导电阳极氧化,安装支架为铝合金。

    • 微型星敏采用小型一体化结构,头部和线路盒集成为一体。任务期间,微型星敏整体暴露在空间环境中,外热流变化比较剧烈。受遮光罩入光口处外热流的影响,需要一条高效的导热通路与本体连接,实现热量快速传导并排散。一方面星敏本体自身可用作散热面的有效面积较小,另一方面星敏本体与安装支架之间的有效接触面积有限,也较难通过支架实现与舱板的有效热耦合并控制微型星敏的温度变化,必须寻找另外的散热途径。又由于受到空间位置的限制,微型星敏很难和附近温度较低的舱板安装热管实现热耦合排散热量。因此,需要结合星敏感器结构特点、构形布局、空间环境影响,通过综合分析,合理设计星敏的散热途径。

    • 综合考虑微型星敏的空间环境以及其光学性能要求,确定其热控指标为:在−20~+40 ℃的指标范围内。

      在微型星敏的热设计过程中遵循了以下原则:

      (1) 采用成熟的热控技术和实施工艺,遵循各项热控规范和标准,力求简单、可靠;

      (2) 采用主被动相结合的热控措施;

      (3) 光机热设计的有机统一,其中包括设计时合理的光学材料、结构材料的选择等;

      (4) 以热控指标为依据,同时考虑热控总装实施,确定设备的热控措施。

    • 微型星敏本体外及支架除了散热面的表面均包覆15单元多层隔热组件。为提高星敏自身散热,微型星敏安装支架外表面喷涂白漆;微型星敏法兰与安装支架之间涂抹导热脂强化导热安装。为加强星敏本体与遮光罩间的热传导,实现温度均匀化,微型星敏在本体上粘贴石墨导热带,导热带的另一侧粘贴在微型星敏遮光罩上。图2为石墨导热带安装示意图。

      Figure 2.  Schematic diagram of installation instructions for graphite heat conduction belt

      星敏本体上采用主动加热控温回路方式,微型星敏加热回路加热片分别粘贴在微型星敏本体底板和侧板上。对星敏组件在多层包覆、支架安装等状态下的漏热进行综合分析,设计加热功率是5 W;控温回路的温度阈值设置为0~20 ℃。

    • 为验证热设计的正确性,对微型星敏的热控方案进行了热分析。在I-DEAS中建立其热分析模型如图3所示。其模型选取壳单元类型,划分了2 245个壳单元,采用设置热耦合的方式简化结构。

      Figure 3.  Thermal analysis commutation network model

    • 外热流分析是热设计的基础。对外热流分析而言,影响最大的热源来自太阳的直接照射热流。外热流的变化是导致星敏感器组件温度波动的主要原因,微型星敏外热流随着卫星进出阴影区发生巨大的变化,使得星敏感器本体乃至安装面产生温度波动。其中,高低温工况外热流如图4图5所示。

      Figure 4.  External heat flow under high temperature condition

      Figure 5.  External heat flow under low temperature condition

      地球轨道高度600 km,低温工况与高温工况参数选取定义如表1所示,表中β为太阳光与轨道面的夹角,假设地球漫反射体,反照率取平均反照率,取常数。

      CaseSolar constant/
      W·m−2
      β/(°)Internal heat source
      power/W
      High temperature case1414735
      Low temperature case130905

      Table 1.  Working condition parameters

    • 微型星敏在未采取热控措施的情况下,微型星敏本体的温度随时间变化分布曲线如图6所示。由分析结果可以看出,未采用合理的热控措施微型星敏本体高温工况的温度为61.1 ℃,低温工况下的最低温度−26.3 ℃,超出温度指标−20~+40 ℃,既有在高温工况下的散热需求,也有低温工况下的加热需求。

      Figure 6.  Temperature distribution of micro star sensor components (without thermal control)

    • 微型星敏在实施热控措施后,微型星敏本体的温度随时间变化分布曲线如图7所示。仿真结果表明,采用合理的热控措施后,微型星敏本体高温工况的温度范围为15.0~19.0 ℃,在轨道周期瞬态情况下微型星敏本体的温度随时间的波动范围是4 ℃;低温工况下的温度范围−4.9~5.1 ℃,在轨道周期瞬态情况下微型星敏本体的温度随时间的波动范围是10 ℃以内,满足热控指标要求。

      Figure 7.  Temperature distribution of micro star sensor components (with thermal control)

      图中,高温工况热控温度范围明显优于低温工况的热控温度范围,主要由于在低温工况下,星敏温度一旦低于控温阈值下限,根据控温策略加热回路迅速启动补偿星敏本体温度,当星敏本体温度到达控温阈值上限后,加热回路关闭;而在高温工况加热回路没有启动,星敏本体温度变化受外热流变化等因素影响,因此,在低温工况、高温工况,导致了星敏本体温度曲线的不同表现。

      星敏组件在高、低温工况温度分布云图如图8图9所示,云图仿真结果表明,星敏本体以及遮光罩的温度均匀性良好。

      Figure 8.  Temperature distribution map of micro star sensor components under high temperature conditions (with thermal control)

      Figure 9.  Temperature distribution map of micro star sensor components under low temperature conditions (with thermal control)

    • 微型星敏本体与遮光罩间在采取粘贴石墨导热带措施的情况后,开展星敏本体与遮光罩温度均匀性仿真,结果如图10所示。经结果分析表明,微型星敏本体与遮光罩之间温度波动范围小,说明石墨导热带措施确保了微型星敏本体与遮光罩之间星敏整体良好的均温性。

      Figure 10.  Temperature uniformity result between micro star sensor body and hood

    • 为考核星敏感器组件热设计的正确性,微型星敏感器及其支架参与完成了整器平台的热平衡试验。星敏感器组件与整器平台一起进行热平衡试验,保证了边界的正确性。热试验条件如下:真空室内真空度优于1.3×10−3 Pa;热沉温度≤100 K。

      热试验中,微型星敏的热控设计状态与前面相同。采用红外加热笼模拟外热流。但由于星敏支架形状复杂,各部位的外热流密度存在较大差异。

      试验结果见表2,温度数据与仿真分析中结果一致性良好,星敏感器组件的热设计能够满足热控指标。

      High temperature caseLow temperature case
      Maximum temperatureMinimum temperatureMaximum temperatureMinimum temperature
      20.6114.476.49−4.98

      Table 2.  Thermal balance test data results (Unit: ℃)

    • 文中针对一种空间平台上的微型星敏感器组件进行了详细的热设计,以及仿真和地面试验验证,得到以下结论:

      (1)分析结果表明,在高、低温极端工况下星敏感器组件的温度分布均能够满足热控指标−20~+40 ℃要求,仿真、试验均验证了星敏组件热控方案的有效性;

      (2)通过仿真及试验的验证表明,以石墨导热作为高效导热通路的方案是合理性,不但解决了微型星敏自身遮光罩外热流热量排散的难题,而且提高星敏感器组件的温度均匀性并减小温度波动范围。

Reference (9)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return