Research progress on ferroelectric localized field-enhanced low-dimensional material-based photodetectors (invited)
-
Graphical Abstract
-
Abstract
Photodetectors are widely used in daily life and national security, including communication, the environment, health and national defense. With the development of time, the performance requirements of photodetectors in terms of sensitivity, response speed and wavelength range have been increasing. The unique electrical and optoelectronic properties of low-dimensional materials make them an essential application prospect in the field of optoelectronic devices. To make full use of the advantages of low-dimensional materials and overcome the shortcomings of high dark current and low absorption rate, researchers have combined ferroelectric materials with low-dimensional materials and used the remnant polarization of ferroelectric materials to form a strong localized field to modulate carriers, which improves the photodetection capability of low-dimensional materials. Recent research results of ferroelectric localized field-enhanced low-dimensional material-based photodetectors are summarized in this paper. Meanwhile, related research on the modulation and performance enhancement of ferroelectric materials in one-dimensional nanowires, two-dimensional materials and junction devices was introduced. Finally, the development trend of ferroelectric localized field-enhanced low-dimensional material-based photodetectors was briefly summarized and proposed.
-
-