Volume 51 Issue 5
Jun.  2022
Turn off MathJax
Article Contents

Tu Huilan, Liu Jia, Weng Haizhong, Zhang Yudan, Dai Jiangnan, Lu Qiaoyin, John F. Donegan, Guo Weihua. Octave-spanning soliton optical frequency comb based on AlN microring resonator (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220311. doi: 10.3788/IRLA20220311
Citation: Tu Huilan, Liu Jia, Weng Haizhong, Zhang Yudan, Dai Jiangnan, Lu Qiaoyin, John F. Donegan, Guo Weihua. Octave-spanning soliton optical frequency comb based on AlN microring resonator (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220311. doi: 10.3788/IRLA20220311

Octave-spanning soliton optical frequency comb based on AlN microring resonator (Invited)

doi: 10.3788/IRLA20220311
Funds:  National Natural Science Foundation of China (61861136001);Science Foundation of Ireland(17/NSFC/4918)
  • Received Date: 2022-05-06
  • Rev Recd Date: 2022-05-16
  • Publish Date: 2022-06-08
  • Self-reference Dissipative Kerr Solitons (DKSs) based on optical microring resonators have a wide range of applications, such as frequency synthesizers, coherent communication, astronomical spectrometer calibration, precision measurements, optical clocks, dual-comb spectroscopy, etc. The directly accessing octave-spanning DKS has been obtained in silicon nitride and lithium niobate microresonators. Here, a simple method that can directly access the octave-spanning DKS in an aluminum nitride (AlN) microring resonator via a single pump was proposed. The TE00 and TE10 modes act as the pump resonance and auxiliary resonance modes, respectively, which had the resonant frequencies close to each other, and the auxiliary mode on red detuning side could effectively balance the thermal drag effect during the formation of soliton. The pump wavelength was tuned slowly to access a stable soliton comb with a bandwidth of 1100-2300 nm and the maximum soliton existence range of 10.4 GHz (83 pm), which was the first time an octave-spanning Kerr soliton had been obtained on the AlN platform. The stable octave-spanning DKS with large soliton accessing window could be obtained in this scheme using a single pump, which was different from other schemes with additional complex controls means and equipments.
  • [1] Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217. doi:  10.1038/nature06401
    [2] Gaeta A L, Lipson M, Kippenberg T J, et al. Photonic-chip-based frequency combs [J]. Nature Photon, 2019, 13: 158-169. doi:  10.1038/s41566-019-0358-x
    [3] Kovach A, Chen D Y, He J H, et al. Emerging material systems for integrated optical Kerr frequency combs [J]. Advances in Optics and Photonics, 2020, 12(1): 135-222. doi:  10.1364/AOP.376924
    [4] Wang M Y, Fan L K, Wu L F, et al. Research on Kerr optical frequency comb generation based on MgF2 crystalline microresonator with ultra-high-Q factor [J]. Infrared and Laser Engineering, 2021, 50(11): 20210481. (in Chinese) doi:  10.3788/IRLA20210481
    [5] Xue X X, Xu Y, Wang P H, et al. Normal-dispersion microcombs enabled by controllable mode interactions [J]. Laser & Photonics Reviews, 2015, 9(4): L23-L28.
    [6] Yu M J, Okawachi Y, Griffith A G, et al. Modelocked mid-infrared frequency combs in a silicon microresonator [J]. Optica, 2016, 3(8): 854-860. doi:  10.1364/OPTICA.3.000854
    [7] Weng H Z, Liu J, Afridi A A, et al. Octave-spanning Kerr frequency comb generation with stimulated Raman scattering in an AlN microresonator [J]. Optics Letters, 2021, 46(3): 540-543. doi:  10.1364/OL.416460
    [8] Wang C, Zhang M, Yu M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation [J]. Nature Communications, 2019, 10: 978. doi:  10.1038/s41467-019-08969-6
    [9] Chang L, Xie W Q, Shu H W, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators [J]. Nature Communications, 2020, 11: 1313. doi:  https://doi.org/10.1038/s41467-020-15005-5
    [10] Chen H J, Ji Q X, Wang H M, et al. Chaos-assisted two-octave-spanning microcombs [J]. Nature Communications, 2020, 11: 2336. doi:  10.1038/s41467-020-15914-5
    [11] Moille G, Li Q, Briles T C, et al. Broadband resonator-waveguide coupling for efficient extraction of octave spanning microcombs [J]. Optics Letters, 2019, 44(19): 4737-4740. doi:  10.1364/OL.44.004737
    [12] Kuse N, Tetsumoto T, Navickaite G, et al. Continuous scanning of a dissipative Kerr microresonator soliton comb for broadband, high resolution spectroscopy [J]. Optics Letters, 2020, 45(4): 927-930. doi:  10.1364/OL.383036
    [13] Haojing Chen, Yunfeng Xiao. Applications of integrated microresonator-based optical frequency combs in precision measurement [J]. Infrared and Laser Engineering, 2021, 50(11): 20210560. (in Chinese) doi:  10.3788/IRLA20210560
    [14] Pfeiffer M H P, Herkommer C, Liu J Q, et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators [J]. Optica, 2017, 4(7): 684-691. doi:  10.1364/OPTICA.4.000684
    [15] Li Q, Briles T C, Westly D A, et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime [J]. Optica, 2017, 4(2): 193-203. doi:  10.1364/OPTICA.4.000193
    [16] Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J]. Science, 2015, 351(6271): 357-360.
    [17] Joshi C, Jang J K, Luke K, et al. Thermally controlled comb generation and soliton modelocking in microresonators [J]. Optics Letters, 2016, 41(11): 2565-2568. doi:  10.1364/OL.41.002565
    [18] Wan S, Niu R, Wang Z Y, et al. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators [J]. Photonics Research, 2020, 8(8): 1342-1349. doi:  10.1364/PRJ.397619
    [19] Weng H Z, Afridi A A, Liu J, et al. Near-octave-spanning breathing soliton crystal in an AlN microresonator [J]. Optics Letters, 2021, 46(14): 3436-3439. doi:  10.1364/OL.422842
    [20] Liu X W, Gong Z, Bruch A W, et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing [J]. Nature Communications, 2021, 12(1): 1-7. doi:  10.1038/s41467-020-20314-w
    [21] Weng H Z, Afridi A A, Li J, et al. Dual-mode microresonators as straightforward access to octave-spanning dissipative Kerr solitons [J]. arXiv, 2022: 2202.09786. doi:  https://doi.org/10.48550/arXiv.2202.09786
    [22] Weng H Z, Liu J, Afridi A A, et al. Directly accessing octave spanning dissipative Kerr soliton frequency combs in an AlN microresonator [J]. Photonics Research, 2021, 9(7): 1351-1357. doi:  10.1364/PRJ.427567
    [23] Liu J, Weng H Z, Afridi A A, et al. Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation [J]. Optics Express, 2020, 28(13): 395013. doi:  10.1364/OE.395013
    [24] Yi X, Yang Q F, Yang K Y, et al. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities [J]. Optics Letters, 2016, 41(15): 3419-3422. doi:  10.1364/OL.41.003419
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(225) PDF downloads(120) Cited by()

Related
Proportional views

Octave-spanning soliton optical frequency comb based on AlN microring resonator (Invited)

doi: 10.3788/IRLA20220311
  • 1. Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. School of Physics, CRANN and AMBER, Trinity College Dublin, Dublin 2, Ireland
Fund Project:  National Natural Science Foundation of China (61861136001);Science Foundation of Ireland(17/NSFC/4918)

Abstract: Self-reference Dissipative Kerr Solitons (DKSs) based on optical microring resonators have a wide range of applications, such as frequency synthesizers, coherent communication, astronomical spectrometer calibration, precision measurements, optical clocks, dual-comb spectroscopy, etc. The directly accessing octave-spanning DKS has been obtained in silicon nitride and lithium niobate microresonators. Here, a simple method that can directly access the octave-spanning DKS in an aluminum nitride (AlN) microring resonator via a single pump was proposed. The TE00 and TE10 modes act as the pump resonance and auxiliary resonance modes, respectively, which had the resonant frequencies close to each other, and the auxiliary mode on red detuning side could effectively balance the thermal drag effect during the formation of soliton. The pump wavelength was tuned slowly to access a stable soliton comb with a bandwidth of 1100-2300 nm and the maximum soliton existence range of 10.4 GHz (83 pm), which was the first time an octave-spanning Kerr soliton had been obtained on the AlN platform. The stable octave-spanning DKS with large soliton accessing window could be obtained in this scheme using a single pump, which was different from other schemes with additional complex controls means and equipments.

    • 基于克尔非线性效应的微腔光频梳(OFCs)由于具有片上易集成和损耗低等优点受到广泛关注[1-4],目前已经在多个材料平台中展示,如氧化硅(SiO2)[1]、氮化硅(Si3N4)[5]、硅(Si)[6]、氮化铝(AlN)[7]、铌酸锂(LiNbO3)[8],铝镓砷 (AlGaAs)[9]和氟化镁(MgF2)[4]等,其中倍频程展宽的光频梳已经在二氧化硅[10]、Si3N4[11]和AlN[7]等平台中实现。

      普通的光频梳噪声大不利于实际应用,因此低噪声且梳齿相干性高的孤子光频梳获得了更多的关注。耗散克尔孤子(DKSs)光频梳有很多实际应用,如光学时钟、相干通信、超快距离测量、双梳光谱分析和精密测量等[12-14]。但在微谐振腔中获取孤子态会面临巨大的挑战,这源于孤子产生过程中伴随的热不稳定现象。当从微腔谐振位置的蓝失谐侧正向扫描泵浦波长时,随着泵浦波长失谐量逐渐增大,腔内功率增大,依次产生主频梳、次频梳和调制不稳定频梳(Modulate Instable Comb, MI梳)[15],泵浦处于谐振波长的蓝失谐侧。随着泵浦波长增大,腔内功率增高,温度上升,谐振峰红移,腔内处于热平衡状态。随着失谐量继续增加,频梳向孤子梳过渡,泵浦波长处于谐振波长的红失谐侧;腔内功率降低,温度下降,谐振峰蓝移,此时腔内处于热不稳定状态。因此,获取孤子光频梳将面临巨大的挑战。如果采取一些措施使得腔内温度保持相对稳定时,MI梳可以过渡为稳定的孤子状态,而孤子存在的波长范围即为孤子台阶。倘若腔内温度不稳定将会迅速降至环境温度,此时泵浦光将彻底失谐跳出谐振态。因此,在微腔中获取孤子态需要稳定腔内的瞬时热效应,保持腔内温度的相对稳定。

      目前DKS已经在Si3N4 [13,16-18]、AlN[19-20]等多个平台中得到了验证,但倍频程DKS主要在Si3N4中广泛实现[14,21]。上述孤子的获取方案主要包括快速正向或反向的泵浦波长扫描[14-15]、泵浦调制产生边带[18]、快速控制谐振腔温度[17]和功率“夹断”(Power Kicking)[16]等。这些方法都会额外引入复杂的控制手段和设备,增加了系统成本。为了通过简单的方式解决微腔中功率的不稳定变化,提出并设计了一种双模微谐振腔,其含有两个偏振相同且频率相近的谐振模式(即TE00模式和TE10模式),利用高阶模辅助稳定腔内温度,从而实现孤子态的访问[22]

    • 获取稳定的孤子态需要腔内达到热稳定,下面主要介绍通过相邻红失谐侧的辅助模式来稳定腔内温度变化,从而实现孤子态的方案。当微腔内的TE00和TE10模式紧邻,并且TE10 在TE00红失谐侧,扫描泵浦波长先后经过这两个模式,微腔内模式的功率分布将发生变化。在泵浦波长即将跳出TE00模式的谐振时,TE00模式将分裂为C共振和S共振,其中C共振与孤子不同位,移回冷腔时的位置,而S共振与孤子同位。此时耦合进TE00模式的总功率降低,伴随着腔内温度的降低,位于TE00模式红失谐侧的TE10模式谐振峰蓝移,因此耦合进入TE10模式的功率升高,补偿了孤子态形成过程中腔内功率的大幅度降低,使得孤子态得以稳定存在。

      为了实现通过辅助模式获取孤子的方案,仿真设计了微环腔的结构参数。首先利用有限元法(COMSOL)计算了厚度为1.2 μm、半径为60 μm的AlN微环谐振腔的模式分布和有效折射率。仿真得到的不同环宽尺寸对应的TE00模式的总体色散Dint曲线如图1(a)所示,环宽变化范围为1.9~3.1 μm,步长0.2 μm,这些环宽下Dint的值都大于0。为了保证光谱的展宽,Dint大于0的范围需要尽可能的宽,且其值不能太大,否则会抑制频谱的展宽,因此环宽为2.1~2.3 μm之间时最满足色散设计要求。

      Figure 1.  (a) Dint of TE00 mode with different ring widths; (b) Difference between the resonant frequency of TE00 and TE10 with different ring widths

      为了实现TE00 和TE10模式紧邻,仿真计算了不同环宽时TE00与TE10模式的谐振频率之差,结果如图1(b)所示,由图可得,环宽为2.29 μm时两个模式在1550 nm处相距最近。

      由上述仿真计算与分析可得,有满足设计方案的结构,确定目标微环的厚度为1.2 μm,半径为60 μm,环宽为2.29 μm。

    • 获取倍频程DKS,除了设计合理的结构参数,还要优化器件的制作工艺,提高微环的品质因子Q,降低产生梳齿的阈值功率,从而能在更低的泵浦功率下获得宽带DKS。

      这里采用低成本、易于大面积制作的紫外光刻定义图形,通过三层掩膜逐步将图形转移到AlN波导层,实现了高品质AlN微环的制备[23]图2(a)为微环整体结构的扫描电镜图,可以清晰地看到微环与波导之间的耦合间隙,说明光刻和刻蚀工艺可以达到要求;图2(b)为波导和微环耦合位置的俯视电镜图,微环和波导的侧壁都有倾角,为后期仿真计算时的理论结构提供了实验依据;图2(c)为器件倾斜30°后波导侧壁的电镜图,侧壁光滑,可以预测微环腔的品质因子较高,有利于实现倍频程DKS。

      Figure 2.  (a) Scanning electron microscopy(SEM) of the overall structure of the microring; (b) SEM of the coupled positions of the waveguide and microring; (c) SEM of the sidewall of the waveguide tilted 30°

    • 图3(a)为微环腔在低功率下测试得到的透射谱(输入功率为20 μW),其中橙线代表TE00模式,蓝线代表TE10模式,两个模式的自由光谱范围(FSR)分别为374 GHz和366 GHz。可以看出,两个模式在1550 nm附近相隔最近,TE00模式和TE10模式的谐振波长分别为1550.582 nm和1550.617 nm,高阶模的谐振波长在基模的红失谐侧,两者仅差35 pm,与理论设计吻合。图3(b)为两个模式在1550 nm附近的透射峰放大图,其中圆点为测试数据点,实线为拟合曲线。通过拟合可以得到TE00和TE10模式的加载品质因子Qload分别为4.8×105和2.8×105,考虑到稍微过耦合的情况,提取两者的本征品质因子Qint分别为1.6×106和7.5×105。所制作的尺寸相同的器件中都可以观测到相似的行为,表明该设计在制造中很容易复现。

      Figure 3.  (a) Transmission spectrum of the TE00 and TE10 in the wavelength range from 1540 nm to 1570 nm; (b) Zoomed-in region of the two close resonances near 1550 nm

    • 逐渐加大泵浦功率,测试了微环在不同输入功率下1550 nm附近的泵浦传输曲线,设置可调谐激光器的波长扫描范围为1550.55~1550.95 nm,扫描速度为1 nm/s。图4为测试获得的泵浦功率为20~430 mW时TE00模式和TE10模式在1550 nm附近的透射谱。泵浦功率在20~330 mW时,透射峰由低功率的洛伦兹形变成三角形,如图中虚线部分曲线所示,并且随着功率的增大吸收峰越来越宽,透射峰为两个模式谐振峰的简单叠加。当泵浦功率为340 mW时,在两个模式之间会出现一个小台阶,即为孤子台阶,宽度约为80 pm,此时TE10模式已经开始辅助平衡腔热。随着功率继续增大,孤子台阶的宽度逐渐减小(图中三角形阴影部分即为每个功率下的孤子台阶范围),孤子台阶宽度变化率约为-11 pm/10 mW。当泵浦功率为420 mW时,孤子台阶消失。可见,对于特定间隔的泵浦和辅助模式,需要采用合适的泵浦功率才能实现孤子状态。

      Figure 4.  Transmission spectrum of TE00 and TE10 near 1550 nm at different powers (20-430 mW)

      选择泵浦功率为350 mW,从TE00谐振峰的蓝失谐侧开始正向扫描泵浦波长,随着失谐量的增加,谐振腔中的光谱呈现五种状态演化过程,如图5(a)所示。

      Figure 5.  When the pump power is 350 mW, (a) the spectral evolution process from i to v is obtained by increasing the pump wavelength; (b) Schematic of the power of pump transmission; (c) Measurements of the beat frequency noise of the two soliton combs and the MI state comb, and the background noise of PD

      首先观察到主梳(光谱i),此时腔内功率不高。当继续增大泵浦波长时,频谱向调制不稳定MI梳(光谱ii)变化,频率范围为140~260 THz,并且在255 THz处观察到类似色散波(Dispersion Wave,DW)的凸起部分。梳齿边缘包络不光滑,此时梳齿的噪声较大且不稳定,频梳也没有实现倍频程展宽。图5(b)为泵浦传输曲线示意图,其中TE00模式谐振区域,包括光谱i和光谱ii所在的孤子台阶蓝失谐侧和孤子台阶。随着泵浦波长逐渐靠近TE00模式谐振波长,耦合进入腔内的功率增多,所以泵浦传输功率随着泵浦波长的增大而逐渐减小。继续增大泵浦波长,频谱由MI梳向孤子梳(光谱iii,光谱iv)变化。孤子1和孤子2的频率范围为130~273 THz (1100~2300 nm),实现了倍频程的DKS,并且由于孤子诱导的切伦科夫辐射,在264 THz处观察到DW,使孤子梳扩宽到正常色散区。

      孤子1和孤子2的梳齿包络非常光滑,测量上述的MI态梳和两个孤子态梳的拍频噪声,并与PD的本底噪声作对比,结果如图5(c)所示。黑线为PD的本底噪声,蓝线和红线分别为孤子1和孤子2与MI梳的拍频噪声,由图可得孤子1和孤子2的噪声强度在宽带范围内都低至PD的本底噪声水平,因此证明了低噪声DKS的产生。对梳齿包络按照sech2函数拟合,孤子1的3 dB带宽为15.2 THz,包含40根梳齿,孤子2的3 dB带宽为12.3 THz,包含33根梳齿。由于腔内发生拉曼自频移效应[24]导致孤子1和孤子2的中心频率相对于泵浦频率都发生了偏移,偏移量分别为5.2 THz和7.4 THz。孤子1和孤子2都处于图5(b) 中TE00模式谐振的孤子台阶区,孤子台阶范围为67 pm。当继续增大泵浦波长时,微环谐振腔跳出TE00谐振进入TE10谐振(光谱v),由前面的低功率测试可得:TE10模式的Q值相较于基模低很多,因此在光谱v中只能看到微弱的四波混频边带,这也减小了高阶模与基模之间的竞争,更有利于DKS的产生。

    • 提出了一种基于AlN微环谐振腔的倍频程DKS,通过相邻红失谐侧的高阶横模来辅助基横模,补偿微腔内功率变化并稳定腔内热效应,从而实现单一泵浦稳定访问倍频程DKS。通过设计反常色散和两个谐振模式相邻的结构来实现DKS的稳定访问。同时,采用低成本、易于大面积制作的紫外光刻定义图形,通过三层掩膜逐步将图形转移到AlN波导层,实现了高品质AlN微环的制备。在单泵浦的连续波长扫描入射下测试获得130~273 THz (1100~2300 nm)宽的倍频程DKS,其最长孤子台阶为83 pm。接下来需要进一步优化器件的设计与制作工艺以提高微环的品质因子Q,降低损耗,并为光频梳的表征和应用做铺垫工作。

Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return