Diffuse reflection characteristics measurement of new type spaceborne solar calibration diffuser in ultraviolet band
-
-
Abstract
The Lambertian diffuse reflectance characteristics of the spaceborne solar calibration diffuser and its radiation attenuation characteristics directly determine the long-term accuracy and stability of the on-orbit radiation calibration of space remote sensing instruments. In order to effectively improve the on-orbit radiation calibration accuracy of spaceborne ultraviolet hyperspectral detection instruments, based on the introduction of commonly used solar calibration diffuse reflector materials in the field of space remote sensing, a new type of ultraviolet wavelength diffuser material is proposed: high purity opaque fused silica material HOD, and the diffuse reflection Lambertian characteristics and radiation attenuation characteristics of the new high purity opaque Fused silica HOD diffuser and the traditional aluminum diffuser are compared by testing. The results show that after 32 equivalent solar hours (32ESH) of vacuum ultraviolet irradiation, the attenuation of the high purity opaque Fused silica HOD diffuser at the wavelength of 290 nm is 7.5%, which is better than 10% of the traditional aluminum diffuser. And the Lambertian maximum cosine deviation of the traditional aluminum diffuser around 290 nm is about 40%, while the high purity opaque Fused silica HOD diffuser is about 10%. Therefore, the diffuse reflection characteristics of the new high purity opaque Fused silica HOD diffuse reflector in the ultraviolet band are better than those of the traditional aluminum diffuser. The high purity opaque Fused silica hod diffuser has better diffuse reflection Lambertian characteristics and stronger vacuum ultraviolet radiation attenuation characteristics, so it can improve the long-term accuracy of the on-orbit radiometric calibration of space ultraviolet remote sensing instruments.
-
-