Volume 51 Issue 5
Jun.  2022
Turn off MathJax
Article Contents

Liu Pengfei, Ren Linhao, Wen Hao, Shi Lei, Zhang Xinliang. Progress in integrated electro-optic frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220381. doi: 10.3788/IRLA20220381
Citation: Liu Pengfei, Ren Linhao, Wen Hao, Shi Lei, Zhang Xinliang. Progress in integrated electro-optic frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220381. doi: 10.3788/IRLA20220381

Progress in integrated electro-optic frequency combs (Invited)

doi: 10.3788/IRLA20220381
  • Received Date: 2022-04-28
  • Rev Recd Date: 2022-05-13
  • Publish Date: 2022-06-08
  • Optical frequency comb (OFC) is the spectrum structure composed of a set of discrete and equally spaced frequency components, which has been widely used in many areas such as spectroscopy, precision measurement, optical communication and sensing as the natural scale for spectral analysis. According to its generation methods, OFC can be generated in three ways, including mode-locked laser based OFC, Kerr microresonator OFC and electro-optic frequency comb (EOFC). EOFC has been greatly developed because of its advantages including remarkable tunability of frequency spacing, high comb line power, as well as the accessible conversion from microwave to optical wave. However, there are some drawbacks in conventional EOFC generator, for instance, the bulk size and required high power, which limit its further development. As the micro/nanofabrication technology gradually grows, more and more materials are applied into integrated chip-scale optical devices, including Si, Silicon Nitride, Aluminum Nitride, Indium Phosphide, Lithium Niobate and Aluminium Gallium Arsenide. Integrated EOFC possesses the excellent characteristics, such as small volume and low power consumption, which is an important device for optoelectronic integrated chip. The research status of the integrated EOFC is reviewed in this paper. First, the classification of optical frequency comb, as well as detailed content about generation mechanism of EOFC are introduced. Next, the information comprising various material platforms, corresponding devices performance metrics and applications about EOFC is presented. Finally, the future research directions are prospected in view of the existing problems of integrated EOFC.
  • [1] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators [J]. Science, 2018, 361(6402): eaan8083. doi:  10.1126/science.aan8083
    [2] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs [J]. Nature Photonics, 2019, 13(3): 158-169. doi:  10.1038/s41566-019-0358-x
    [3] Guo H, Karpov M, Lucas E, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators [J]. Nature Physics, 2017, 13(1): 94-102. doi:  10.1038/nphys3893
    [4] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs [J]. Science, 2011, 332(6029): 555-559. doi:  10.1126/science.1193968
    [5] Hargrove L E, Fork R L, Pollack M A. Locking of He-Ne laser modes induced by synchronous intracavity modulation [J]. Applied Physics Letters, 1964, 5: 4. doi:  10.1063/1.1754025
    [6] Hall J L. Nobel lecture: Defining and measuring optical frequencies [J]. Reviews of Modern Physics, 2006, 78(4): 1279-1295. doi:  10.1103/RevModPhys.78.1279
    [7] Hänsch T W. Nobel lecture: Passion for precision [J]. Reviews of Modern Physics, 2006, 78(4): 1297-1309. doi:  10.1103/RevModPhys.78.1297
    [8] Diddams S A. The evolving optical frequency comb [invited] [J]. Journal of the Optical Society of America B, 2010, 27(11): B51-B62. doi:  10.1364/JOSAB.27.000B51
    [9] Diddams S A, Vahala K, Udem T. Optical frequency combs: Coherently uniting the electromagnetic spectrum [J]. Science, 2020, 369(6501): eaay3676. doi:  10.1126/science.aay3676
    [10] Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217. doi:  10.1038/nature06401
    [11] Picqué N, Hänsch T W. Frequency comb spectroscopy [J]. Nature Photonics, 2019, 13(3): 146-157. doi:  10.1038/s41566-018-0347-5
    [12] Ycas G, Giorgetta F R, Baumann E, et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm [J]. Nature Photonics, 2018, 12(4): 202-208. doi:  10.1038/s41566-018-0114-7
    [13] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy [J]. Optica, 2016, 3(4): 414-426. doi:  10.1364/OPTICA.3.000414
    [14] Millot G, Pitois S, Yan M, et al. Frequency-agile dual-comb spectroscopy [J]. Nature Photonics, 2016, 10(1): 27-30. doi:  10.1038/nphoton.2015.250
    [15] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy [J]. Science, 2016, 354(6312): 600-603. doi:  10.1126/science.aah6516
    [16] Yasui T, Yokoyama S, Inaba H, et al. Terahertz frequency metrology based on frequency comb [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 191-201. doi:  10.1109/JSTQE.2010.2047099
    [17] Ye J, Schnatz H, Hollberg L W. Optical frequency combs: From frequency metrology to optical phase control [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(4): 1041-1058. doi:  10.1109/JSTQE.2003.819109
    [18] Yoshii K, Nomura J, Taguchi K, et al. Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation [J]. Physical Review Applied, 2019, 11(5): 054031. doi:  10.1103/PhysRevApplied.11.054031
    [19] Suh M G, Vahala K J. Soliton microcomb range measurement [J]. Science, 2018, 359(6378): 884-887. doi:  10.1126/science.aao1968
    [20] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs [J]. Science, 2018, 359(6378): 887-891. doi:  10.1126/science.aao3924
    [21] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications [J]. Nature, 2017, 546(7657): 274-279. doi:  10.1038/nature22387
    [22] Corcoran B, Tan M X, Xu X Y, et al. Ultra-dense optical data transmission over standard fibre with a single chip source [J]. Nature Communications, 2020, 11(1): 7. doi:  10.1038/s41467-019-13787-x
    [23] Hu H, Oxenlowe L K. Chip-based optical frequency combs for high-capacity optical communications [J]. Nanophotonics, 2021, 10(5): 1367-1385. doi:  10.1515/nanoph-2020-0561
    [24] Liu J Q, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs [J]. Nature Photonics, 2020, 14(8): 486-491. doi:  10.1038/s41566-020-0617-x
    [25] Rieker G B, Giorgetta F R, Swann W C, et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths [J]. Optica, 2014, 1(5): 290-298. doi:  10.1364/OPTICA.1.000290
    [26] Zhao S X, Liu Q W, He Z Y. Multi-tone Pound-Drever-Hall technique for high-resolution multiplexed Fabry-Perot resonator sensors [J]. Journal of Lightwave Technology, 2020, 38(22): 6379-6384. doi:  10.1109/JLT.2020.3011575
    [27] Muraviev A V, Smolski V O, Loparo Z E, et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs [J]. Nature Photonics, 2018, 12(4): 209-214. doi:  10.1038/s41566-018-0135-2
    [28] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications [J]. Communications Physics, 2019, 2(1): 153. doi:  10.1038/s42005-019-0249-y
    [29] Kues M, Reimer C, Lukens J M, et al. Quantum optical microcombs [J]. Nature Photonics, 2019, 13(3): 170-179. doi:  10.1038/s41566-019-0363-0
    [30] Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: Principles, status, and applications [J]. Advances in Optics and Photonics, 2016, 8(3): 465-540. doi:  10.1364/AOP.8.000465
    [31] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators [J]. Nature Photonics, 2013, 8(2): 145-152.
    [32] Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J]. Science, 2016, 351(6271): 357-360. doi:  10.1126/science.aad4811
    [33] Stern B, Ji X C, Okawachi Y, et al. Battery-operated integrated frequency comb generator [J]. Nature, 2018, 562(7727): 401-405. doi:  10.1038/s41586-018-0598-9
    [34] Cole D C, Lamb E S, Del'Haye P, et al. Soliton crystals in Kerr resonators [J]. Nature Photonics, 2017, 11(10): 671-676. doi:  10.1038/s41566-017-0009-z
    [35] Sich M, Krizhanovskii D N, Skolnick M S, et al. Observation of bright polariton solitons in a semiconductor microcavity [J]. Nature Photonics, 2012, 6(1): 50-55. doi:  10.1038/nphoton.2011.267
    [36] Xue X X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators [J]. Nature Photonics, 2015, 9(9): 594-600. doi:  10.1038/nphoton.2015.137
    [37] Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators [J]. Nature Photonics, 2012, 6(7): 480-487. doi:  10.1038/nphoton.2012.127
    [38] Godey C, Balakireva I V, Coillet A, et al. Stability analysis of the spatiotemporal lugiato-lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes [J]. Physical Review A, 2014, 89(6): 063814. doi:  10.1103/PhysRevA.89.063814
    [39] Wang W, Wang L, Zhang W. Advances in soliton microcomb generation [J]. Advanced Photonics, 2020, 2(3): 034001.
    [40] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators [J]. Nature Photonics, 2014, 8(2): 145-152. doi:  10.1038/nphoton.2013.343
    [41] Lundberg L, Karlsson M, Lorences-Riesgo A, et al. Frequency comb-based WDM transmission systems enabling joint signal processing [J]. Applied Sciences, 2018, 8(5): 718. doi:  10.3390/app8050718
    [42] Rueda A, Sedlmeir F, Kumari M, et al. Resonant electro-optic frequency comb [J]. Nature, 2019, 568(7752): 378-381. doi:  10.1038/s41586-019-1110-x
    [43] Chang L, Liu S, Bowers J E. Integrated optical frequency comb technologies [J]. Nature Photonics, 2022, 16(2): 95-108. doi:  10.1038/s41566-021-00945-1
    [44] Buscaino B, Zhang M, Loncar M, et al. Design of efficient resonator-enhanced electro-optic frequency comb generators [J]. Journal of Lightwave Technology, 2020, 38(6): 1400-1413. doi:  10.1109/JLT.2020.2973884
    [45] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages [J]. Nature, 2018, 562(7725): 101-104. doi:  10.1038/s41586-018-0551-y
    [46] Xu M Y, He M B, Zhu Y T, et al. Flat optical frequency comb generator based on integrated lithium niobate modulators [J]. Journal of Lightwave Technology, 2022, 40(2): 339-345. doi:  10.1109/JLT.2021.3100254
    [47] Ren T H, Zhang M, Wang C, et al. An integrated low-voltage broadband lithium niobate phase modulator [J]. IEEE Photonics Technology Letters, 2019, 31(11): 889-892. doi:  10.1109/LPT.2019.2911876
    [48] Andriolli N, Cassese T, Chiesa M, et al. Photonic integrated fully tunable comb generator cascading optical modulators [J]. Journal of Lightwave Technology, 2018, 36(23): 5685-5689. doi:  10.1109/JLT.2018.2877020
    [49] Slavik R, Farwell S G, Wale M J, et al. Compact optical comb generator using InP tunable laser and push-pull modulator [J]. IEEE Photonics Technology Letters, 2015, 27(2): 217-220. doi:  10.1109/LPT.2014.2365259
    [50] Yokota N, Yasaka H. Operation strategy of InP Mach-Zehnder modulators for flat optical frequency comb generation [J]. IEEE Journal of Quantum Electronics, 2016, 52(8): 1-7.
    [51] Nagarjun K P, Jeyaselvan V, Selvaraja S K, et al. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators [J]. Opt Express, 2018, 26(8): 10744-10753. doi:  10.1364/OE.26.010744
    [52] Nagarjun K P, Raj P, Jeyaselvan V, et al. Microwave power induced resonance shifting of silicon ring modulators for continuously tunable, bandwidth scaled frequency combs [J]. Opt Express, 2020, 28(9): 13032-13042. doi:  10.1364/OE.386810
    [53] Liu S, Wu K, Zhou L, et al. Repetition-frequency-doubled transform-limited optical pulse generation based on silicon modulators [J]. Journal of Lightwave Technology, 2020, 38(22): 6299-6311. doi:  10.1109/JLT.2020.3010993
    [54] Pockels F. Ueber den einfluss elastischer deformationen, speciell einseitigen druckes, auf das optische verhalten krystallinischer körper [J]. Annalen der Physik, 1889, 273(5): 144-172. doi:  10.1002/andp.18892730509
    [55] Parriaux A, Hammani K, Millot G. Electro-optic frequency combs [J]. Advances in Optics and Photonics, 2020, 12(1): 223-287. doi:  10.1364/AOP.382052
    [56] Imran M, Anandarajah P M, Kaszubowska-Anandarajah A, et al. A survey of optical carrier generation techniques for terabit capacity elastic optical networks [J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 211-263.
    [57] Pile B, Taylor G. Small-signal analysis of microring resonator modulators [J]. Optics Express, 2014, 22(12): 14913-14928. doi:  10.1364/OE.22.014913
    [58] Sacher W D, Green W M J, Gill D M, et al. Binary phase-shift keying by coupling modulation of microrings [J]. Optics Express, 2014, 22(17): 20252-20259. doi:  10.1364/OE.22.020252
    [59] Qi Y F, Li Y. Integrated lithium niobate photonics [J]. Nanophotonics, 2020, 9(6): 1287-1320. doi:  10.1515/nanoph-2020-0013
    [60] Kourogi M, Nakagawa K, Ohtsu M. Wide-span optical frequency comb generator for accurate optical frequency difference measurement [J]. IEEE Journal of Quantum Electronics, 1993, 29(10): 2693-2701. doi:  10.1109/3.250392
    [61] Brothers L R, Wong N C. Dispersion compensation for terahertz optical frequency comb generation [J]. Optics Letters, 1997, 22(13): 1015-1017. doi:  10.1364/OL.22.001015
    [62] Bruel M. Silicon on insulator material technology [J]. Electronics Letters, 1995, 31(14): 1201-1202. doi:  10.1049/el:19950805
    [63] Levy M, Osgood R M, Liu R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing [J]. Applied Physics Letters, 1998, 73(16): 2293-2295. doi:  10.1063/1.121801
    [64] Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices [J]. Laser & Photonics Reviews, 2012, 6(4): 488-503.
    [65] Lin J, Bo F, Cheng Y, et al. Advances in on-chip photonic devices based on lithium niobate on insulator [J]. Photonics Research, 2020, 8(12): 1910-1936. doi:  10.1364/PRJ.395305
    [66] Zhu D, Shao L B, Yu M J, et al. Integrated photonics on thin-film lithium niobate [J]. Advances in Optics and Photonics, 2021, 13(2): 242-352. doi:  10.1364/AOP.411024
    [67] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator [J]. Nature, 2019, 568(7752): 373-377. doi:  10.1038/s41586-019-1008-7
    [68] Xu M, He M, Zhu Y, et al. Integrated thin film lithium niobate Fabry–Perot modulator [invited] [J]. Chinese Optics Letters, 2021, 19(6): 060003. doi:  10.3788/COL202119.060003
    [69] He J, Li Y. Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR [J]. Opt Express, 2020, 28(21): 30771-30783. doi:  10.1364/OE.401881
    [70] Zafar F, Iqbal A. Indium phosphide nanowires and their applications in optoelectronic devices [J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2016, 472(2187): 18.
    [71] Tol van der J J G M, Jiao Y, Shen L, et al. Indium phosphide integrated photonics in membranes [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(1): 1-9.
    [72] Wang Z, Tian B, Pantouvaki M, et al. Room-temperature InP distributed feedback laser array directly grown on silicon [J]. Nature Photonics, 2015, 9(12): 837-842. doi:  10.1038/nphoton.2015.199
    [73] Shen L, Jiao Y, Yao W, et al. High-Bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform [J]. Optics Express, 2016, 24(8): 8290-8301. doi:  10.1364/OE.24.008290
    [74] Xue Y, Han Y, Tong Y, et al. High-performance III-V photodetectors on a monolithic InP/SOI platform [J]. Optica, 2021, 8(9): 1204-1209. doi:  10.1364/OPTICA.431357
    [75] Nguyen N L K, Nguyen D P, Stameroff A N, et al. A 1-160-GHz InP distributed amplifier using 3-D interdigital capacitors [J]. IEEE Microwave and Wireless Components Letters, 2020, 30(5): 492-495. doi:  10.1109/LMWC.2020.2980280
    [76] Liu T, Pagliano F, van Veldhoven R, et al. Low-voltage MEMS optical phase modulators and switches on a indium phosphide membrane on silicon [J]. Applied Physics Letters, 2019, 115(25): 251104. doi:  10.1063/1.5128212
    [77] Kashi A A, Tol van der J J G M, Williams K A, et al. Electro-optic slot waveguide phase modulator on the InP membrane on silicon platform [J]. IEEE Journal of Quantum Electronics, 2021, 57(1): 1-10.
    [78] Betancur-Perez A, Martin-Mateos P, Dios C, et al. Design of a multipurpose photonic chip architecture for THz Dual-Comb spectrometers [J]. Sensors, 2020, 20(21): 6089. doi:  10.3390/s20216089
    [79] Liu D P, Tang J, Meng Y, et al. Ultra-low Vpp and high-modulation-depth InP-based electro-optic microring modulator [J]. Journal of Semiconductors, 2021, 42(8): 082301. doi:  10.1088/1674-4926/42/8/082301
    [80] Bontempi F, Andriolli N, Scotti F, et al. Comb line multiplication in an InP integrated photonic circuit based on cascaded modulators [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-7.
    [81] Jalali B, Fathpour S. Silicon photonics [J]. Journal of Lightwave Technology, 2006, 24(12): 4600-4615. doi:  10.1109/JLT.2006.885782
    [82] Bruel M, Aspar B, Auberton-Herve A J. Smart-cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1997, 36(3B): 1636-1641.
    [83] Aspar B, Moriceau H, Jalaguier E, et al. The generic nature of the smart-cut® process for thin film transfer [J]. Journal of Electronic Materials, 2001, 30(7): 834-840. doi:  10.1007/s11664-001-0067-2
    [84] Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics [J]. Journal of Optics, 2016, 18(7): 073003. doi:  10.1088/2040-8978/18/7/073003
    [85] Bogaerts W, Chrostowski L. Silicon photonics circuit design: Methods, tools and challenges [J]. Laser & Photonics Reviews, 2018, 12(4): 1700237.
    [86] Arakawa Y, Nakamura T, Urino Y, et al. Silicon photonics for next generation system integration platform [J]. IEEE Communications Magazine, 2013, 51(3): 72-77. doi:  10.1109/MCOM.2013.6476868
    [87] Marchetti R, Lacava C, Carroll L, et al. Coupling strategies for silicon photonics integrated chips [invited] [J]. Photonics Research, 2019, 7(2): 201-239. doi:  10.1364/PRJ.7.000201
    [88] Lin H, Luo Z, Gu T, et al. Mid-infrared integrated photonics on silicon: A perspective [J]. Nanophotonics, 2018, 7(2): 393-420.
    [89] Siew S Y, Li B, Gao F, et al. Review of silicon photonics technology and platform development [J]. Journal of Lightwave Technology, 2021, 39(13): 4374-4389. doi:  10.1109/JLT.2021.3066203
    [90] Lee C H, Chang R K, Bloembergen N. Nonlinear electroreflectance in silicon and silver [J]. Physical Review Letters, 1967, 18(5): 167-170. doi:  10.1103/PhysRevLett.18.167
    [91] Chen Z, Zhao J, Zhang Y, et al. Pockel’s effect and optical rectification in (111)-cut near-intrinsic silicon crystals [J]. Applied Physics Letters, 2008, 92(25): 251111. doi:  10.1063/1.2952462
    [92] Wu X, Xu K, Zhou W, et al. Scalable ultra-wideband pulse generation based on silicon photonic integrated circuits [J]. IEEE Photonics Technology Letters, 2017, 29(21): 1896-1899. doi:  10.1109/LPT.2017.2755589
    [93] Deniel L, Weckenmann E, Pérez Galacho D, et al. Silicon photonics phase and intensity modulators for flat frequency comb generation [J]. Photonics Research, 2021, 9(10): 2068-2076. doi:  10.1364/PRJ.431282
    [94] Wang Z, Ma M, Sun H, et al. Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators [J]. IEEE Journal of Quantum Electronics, 2019, 55(6): 1-6. doi:  10.1109/JQE.2019.2948152
    [95] Lipson M. Compact electro-optic modulators on a silicon chip [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1520-1526. doi:  10.1109/JSTQE.2006.885341
    [96] Xu Y, Lin J, Dube-Demers R, et al. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators [J]. Opt Lett, 2018, 43(7): 1554-1557. doi:  10.1364/OL.43.001554
    [97] Liu S, Wu K, Zhou L, et al. Microwave pulse generation with a silicon Dual-Parallel modulator [J]. Journal of Lightwave Technology, 2020, 38(8): 2134-2143. doi:  10.1109/JLT.2020.2964102
    [98] Deniel L, Weckenmann E, Pérez Galacho D, et al. Frequency-tuning dual-comb spectroscopy using silicon mach-zehnder modulators [J]. Optics Express, 2020, 28(8): 10888-10898. doi:  10.1364/OE.390041
    [99] Demirtzioglou I, Lacava C, Bottrill K R H, et al. Frequency comb generation in a silicon ring resonator modulator [J]. Opt Express, 2018, 26(2): 790-796. doi:  10.1364/OE.26.000790
    [100] Khalil M, Maram R, Naghdi B, et al. Electro-optic frequency comb generation using cascaded silicon microring modulators [C]// Proceedings of the OSA Advanced Photonics Congress (AP), 2020.
    [101] Kowligy A S, Carlson D R, Hickstein D D, et al. Mid-infrared frequency combs at 10 GHz [J]. Opt Lett, 2020, 45(13): 3677-3680. doi:  10.1364/OL.391651
    [102] Weimann C, Schindler P C, Palmer R, et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission [J]. Opt Express, 2014, 22(3): 3629-3637. doi:  10.1364/OE.22.003629
    [103] Jiang P, Balram K C. Suspended gallium arsenide platform for building large scale photonic integrated circuits: Passive devices [J]. Opt Express, 2020, 28(8): 12262-12271. doi:  10.1364/OE.385618
    [104] Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: A novel generation of optical sources [J]. Physics Reports, 2018, 729: 1-81. doi:  10.1016/j.physrep.2017.08.004
    [105] Roslund J, de Araújo R M, Jiang S, et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs [J]. Nature Photonics, 2014, 8(2): 109-112. doi:  10.1038/nphoton.2013.340
    [106] Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs [J]. Nature Photonics, 2014, 8(5): 375-380. doi:  10.1038/nphoton.2014.57
    [107] Pfeifle J, Vujicic V, Watts R T, et al. Flexible terabit/s nyquist-wdm super-channels using a gain-switched comb source [J]. Optics Express, 2015, 23(2): 724-738. doi:  10.1364/OE.23.000724
    [108] Doi M, Sugiyama M, Tanaka K, et al. Advanced LiNbO3 optical modulators for broadband optical communications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(4): 745-750. doi:  10.1109/JSTQE.2006.876192
    [109] Li X, Wang M, Li J, et al. Monolithic 1×4 reconfigurable electro-optic tunable interleaver in lithium niobate thin film [J]. IEEE Photonics Technology Letters, 2019, 31(20): 1611-1614. doi:  10.1109/LPT.2019.2938325
    [110] Dupuis N, Doerr C R, Zhang L M, et al. InP-based comb generator for optical OFDM [J]. Journal of Lightwave Technology, 2012, 30(4): 466-472. doi:  10.1109/JLT.2011.2173463
    [111] Lin J C, Sepehrian H, Xu Y L, et al. Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks [J]. IEEE Photonics Technology Letters, 2018, 30(17): 1495-1498. doi:  10.1109/LPT.2018.2856767
    [112] Cingöz A, Yost D C, Allison T K, et al. Direct frequency comb spectroscopy in the extreme ultraviolet [J]. Nature, 2012, 482(7383): 68-71. doi:  10.1038/nature10711
    [113] Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive real-time dual-comb spectroscopy [J]. Nature Communications, 2014, 5(1): 3375. doi:  10.1038/ncomms4375
    [114] Dutt A, Joshi C, Ji X, et al. On-chip dual-comb source for spectroscopy [J]. Science Advances, 2018, 4(3): e1701858. doi:  10.1126/sciadv.1701858
    [115] Yu M, Okawachi Y, Griffith A G, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy [J]. Nature Commu-nications, 2018, 9(1): 1869. doi:  10.1038/s41467-018-04350-1
    [116] Shams-Ansari A, Yu M, Chen Z, et al. Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy [J]. Communications Physics, 2022, 5(1): 88. doi:  10.1038/s42005-022-00865-8
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Article Metrics

Article views(601) PDF downloads(240) Cited by()

Related
Proportional views

Progress in integrated electro-optic frequency combs (Invited)

doi: 10.3788/IRLA20220381
  • 1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. Optics Valley Laboratory, Wuhan 430074, China

Abstract: Optical frequency comb (OFC) is the spectrum structure composed of a set of discrete and equally spaced frequency components, which has been widely used in many areas such as spectroscopy, precision measurement, optical communication and sensing as the natural scale for spectral analysis. According to its generation methods, OFC can be generated in three ways, including mode-locked laser based OFC, Kerr microresonator OFC and electro-optic frequency comb (EOFC). EOFC has been greatly developed because of its advantages including remarkable tunability of frequency spacing, high comb line power, as well as the accessible conversion from microwave to optical wave. However, there are some drawbacks in conventional EOFC generator, for instance, the bulk size and required high power, which limit its further development. As the micro/nanofabrication technology gradually grows, more and more materials are applied into integrated chip-scale optical devices, including Si, Silicon Nitride, Aluminum Nitride, Indium Phosphide, Lithium Niobate and Aluminium Gallium Arsenide. Integrated EOFC possesses the excellent characteristics, such as small volume and low power consumption, which is an important device for optoelectronic integrated chip. The research status of the integrated EOFC is reviewed in this paper. First, the classification of optical frequency comb, as well as detailed content about generation mechanism of EOFC are introduced. Next, the information comprising various material platforms, corresponding devices performance metrics and applications about EOFC is presented. Finally, the future research directions are prospected in view of the existing problems of integrated EOFC.

    • 光学频率梳是由一系列离散且等间隔分布的频率成分所组成的光谱结构[1-4]。国际上首个光学频率梳由Hargrove等人在锁模激光器中实现[5],并在之后获得了长足的发展,极大推动了精密测量科学。因在频率精密测量方面所作出的贡献,John Hall和Theodor W. Hänsch两人获得了2005年诺贝尔物理学奖[6-7]

      光学频率梳作为光谱分析的天然刻度尺[8-10],其已广泛应用于光谱学[11-15]、精密测量[16-20]、光通信[21-24]、传感[25-27]等领域。不同的应用对光频梳有不同的性能要求[28-29],如梳齿功率、梳齿间隔、光谱宽度、工作波段。目前主要通过三种方法产生光频梳:锁模激光器、克尔微腔及电光调制。锁模激光器是用于产生光频梳的最初途径[5]。当多纵模激光器稳定运行工作时,激光腔内存在多个循环往复的脉冲,光在腔内的往返时间将决定脉冲间隔[30],对脉冲串进行傅里叶变换后,对应频域上出现了一系列等间隔频率成分,即光频梳。锁模激光器能够产生高功率宽带光频梳,但梳齿间隔通常难以调谐,同时结构相对复杂。利用光学微腔同样能够产生光频梳,该法通常采用单模激光与微腔进行耦合。由于光学微腔对光场具有极强的束缚作用,四波混频等非线性克尔效应能够在腔内产生,从而产生光频梳[31]。进一步对泵浦激光进行调谐,并使腔内色散与非线性、增益与损耗实现平衡[1],腔内能够产生克尔孤子光频梳。克尔微腔产生的光频梳通常具有较宽的光谱[32]、良好的相干性、易于集成,是构建光电集成芯片的重要器件[2, 33]。但克尔光频梳形成机理较为复杂[34-38],需要精细的频率调谐手段才能达到孤子态[39-40],且梳齿间隔受制于微腔结构,难以有效调谐。图1给出了用于产生光频梳的典型的锁模激光器与克尔微腔结构。

      Figure 1.  Schematic of optical frequency comb generators. (a) Typical self-starting mode-locked fiber laser; (b) On-chip optical frequency comb generation based on Kerr microresonators

      电光频率梳(电光梳)基于电光调制过程,主要通过射频信号对光载波进行光学调制,从而在光载波两端出现等间隔分布的频率梳齿,梳齿间隔与调制波频率相同。通过改变调制波的属性,如频率、幅度及调制器个数等,电光梳的性能也会产生相应变化,如梳齿数目、梳齿间隔及光梳平坦度等,使得其在波分复用技术[41] 等方面得到广泛应用。但为了提高光频梳的光谱宽度,传统电光梳通常由多个调制器级联构成,因此体积及功耗均较大,限制了其实际应用。

      随着微纳加工技术的不断发展,越来越多的光电器件能够在集成光学平台上实现,而集成电光梳器件由于其优异的性能及功耗低、体积小等诸多优势,成为光电集成芯片中的重要部分[42-43],引起了研究人员的极大兴趣,图2展示了一种高效的集成电光梳产生器件。目前,集成电光梳已在多个材料平台上实现,如铌酸锂[44-47]、磷化铟[48-50]、SOI[51-53]等,且能够以多种调制结构实现电光梳,如单相位调制器、多调制器级联等。

      Figure 2.  Schematic of an integrated electro-optic frequency comb generator

      文中旨在对集成电光梳的研究现状进行综述,阐述光频梳的定义及分类,详细论述电光梳的产生原理;介绍不同材料平台上产生的电光梳性能指标及其应用,梳理相关的研究进展;基于目前集成电光梳领域存在的问题,对未来的研究趋势做出展望。

    • 电光梳产生的基本原理是材料中的电光效应。电光效应是指材料的折射率随材料两端外加电场的变化而线性变化的光学非线性现象,同时又被称为Pockels效应[54]。接下来,探讨如何利用电光效应使得载波两端产生新的边带。考虑一个折射率为n1的无损耗理想晶体,其材料折射率随外加电场的变化而线性变化。假设一束频率为fc,振幅为E1的连续激光在该晶体直波导中传播,直波导长度为L1,上下两端嵌有长度为L2的金属电极以施加电场,电场具有振幅V1与频率fm,如图3(a)所示。当电场V1为零,激光经过该波导时,输出电场为${E_0}(t) = {E_1}{{\rm e}^{j2\pi {f_c}t}}$。当振幅V1不为零时,此时波导折射率发生变化为:$n = {n_1} + \alpha {V_1}\sin ({f_m}t)$$\alpha $为折射率随电场变化的线性系数,此时输出光场可表示为:

      Figure 3.  Schematic of electro-optic modulators.(a) Single-phase modulator;(b) Dual-drive Mach-Zehnder modulator

      其中:

      Vπ为使得输出激光刚好发生π相移时对应的电压,也被称为半波电压。利用Jacob-Anger展开公式[55]对输出光场进行快速傅里叶变换,可得到光场在频域对应的函数:

      式中:Jn为第一类贝塞尔函数;δ(f-nfm-fc)为狄拉克函数,代表频谱中的频率分量。可以看到,经过电光调制后的光载波在fc两端产生了新的频率分量,图4(a)展示了单相位调制器产生的频谱。

      Figure 4.  (a) Frequency spectrum of a single-phase modulator;(b) Frequency spectrum of a DD-MZM

      此外,当合理设置输入光偏振方向与晶体折射率轴的相对位置,再配合偏振控制器便可以对输入光的强度、偏振方向进行调制。波导两端通常会被施加偏置电压,用来选择调制器的工作位置与调制范围,并补偿调制器的漂移以保持性能稳定。

      考虑单个双驱动马赫-曾德尔调制器(Dual drive Mach-Zehnder modulator, DD-MZM)产生电光梳的情况,如图3(b)所示。此时调制器末端的输出光场可以表示为:

      式中:${\phi _1}(t)$${\phi _2}(t)$分别为两臂上的光场所经历的相位改变,与公式(2)具有同样的表达形式,但对应调制信号的电压发生了改变,且考虑了偏置电压。公式(4)同样可以通过傅里叶变换得到频域表达式[55]

      上式对应的频谱如图4(b)所示。可以看到,此时产生的边带数目由于DD-MZM的调制方式并未改变,但是产生的光梳形状变得更加平坦,这主要是由于引入了偏置电压,使得能够对光梳的形状进行再次调控。独立的电光调制器产生的边带相对来说较少,所以一般采用级联相位调制器及强度调制器以拓宽所产生边带的范围。输出端通常级联强度调制器以使光谱更为平坦,经过级联后产生的频率分量数目有所增加,拓宽了光谱范围。当MZM与相位调制器级联时,此时的输出光场可以表示为[56]

      式中:$\alpha $$\;\beta $分别是MZM和相位调制器上所施加的电压;$\gamma $对应MZM上所施加的偏置电压。

      传统的电光梳一般采用体块状电光晶体来实现电光调制,而在片上集成电光梳中一般使用微环谐振腔结构来产生。通过对微环腔本身进行电光调制来产生电光梳,典型装置如图5(a)所示。当光场在微环内进行传输时,微环折射率的变化导致了光波相位的变化,从而可对载波实现相位调制,使得载波两端产生新的边带,该过程在微环内循环往复,最终产生光频梳。由于微环腔所具备的高Q值使得微腔中的电光效应得到显著增强,产生的光频梳具有优异性能。此外,对微环与总线波导之间的耦合强度进行调制[57-58],同样可以在微环内产生光梳,不过该法相对复杂,实际应用时使用较少,典型装置如图5(b)所示。

      Figure 5.  (a) Schematic of an microring intracavity modulator; (b) Schematic of a coupling-modulated modulator

    • 铌酸锂(Lithium niobite, LiNbO3, LN)晶体具有许多优势,包括很强的电光效应(1500 nm处r33=27 pm/V)、较大的折射率(在1550 nm处no=2.21, ne=2.14)及较宽的透明窗口(400 nm~5 μm)、具有多种非线性效应及稳定的物理化学性质[59],这使得LN成为最早实现电光梳的平台之一[60-61]。随着近年来微纳加工技术的不断发展,应用于硅薄膜的成熟智能切割技术逐渐适用于LN平台[62],能够获得高性能的铌酸锂薄膜(Lithium niobite on insulator, LNOI)[63-64]以应用于集成光学平台[65],使得电光梳能够实现片上集成化,从而达到低功耗、小型化的要求。图6展示了制作铌酸锂薄膜的智能切割工艺流程图。

      Figure 6.  Flow chart of the smart-cut process for a LNOI wafer[66]

      目前许多性能优异的电光梳在LNOI平台得以实现,这些电光梳具有频率可调谐性优良[47, 67]、驱动电压小[42, 46]、光谱宽[44, 67]、光谱平坦[46]等优势。

      Zhang等人利用微环谐振腔与电光相位调制器相结合以实现电光梳[67]图7展示了文中的集成电光梳示意图及光谱。为了利用铌酸锂强大的二阶非线性,该研究在x切铌酸锂薄膜平台上制作了具有超低损耗的微环腔,该腔Q值约为1.5×106,从而能实现更加高效的电光调制。图7(b)展示了在调制系数为β=1.2π时电光梳输出的光谱,其具有超过900根斜率为1 dB·nm−1的梳齿,梳齿间隔为10.453 GHz,同时该光谱展宽超过80 nm,完全占据了光通信中的L波段与部分C波段及U波段,在光通信领域有极大的应用潜力。该电光梳还具有十分优异的可调谐性能,利用两个射频调制能够实现10 Hz至100 MHz以上的梳齿频率调谐。该研究同时指出对集成电光梳进行色散控制能够进一步实现倍频展宽,对进一步稳定光梳频率有着十分重要的意义。

      Figure 7.  Integrated EO comb generator and its output spectrum based on LNOI[67]. (a) Optical micrograph of a fabricated lithium niobate microring resonator; (b) Measured output spectrum of the EO comb generated from the microring resonator, demonstrating a bandwidth exceeding 80 nm and more than 900 comb lines with a slope of 1 dB·nm−1

      Xu等人在LNOI平台上实现了基于法布里-珀罗谐振腔(Fabry–Pérot cavity, FP腔)的电光梳[68],FP腔的Q值为4×105,由LN波导上的两个分布式布拉格反射器(Distributed Bragg reflectors, DBR)构成,DBR在1555 nm处具有98%的最大反射率。采用长度为4 mm的电光相位调制器对FP腔进行调制,最终输出了包含18个边频、梳齿间隔为16.3 GHz的光梳光谱。

      为了提升电光梳的平坦度,Xu等人在LNOI平台上实现了平顶电光梳[46]。电光梳由LNOI平台上的MZM与电光相位调制器级联产生,该电光梳具有极低的射频驱动电压(相位调制器工作在10 GHz 时Vπ=4.3 V)、超小的片上损耗(2.1 dB)、宽电光带宽(~67 GHz),且具有可调谐性(10~67 GHz)。在频率为31 GHz、功率为1.8 mW的射频信号驱动下,能够产生位于光通信C波段的13个频率分量,梳齿功率的变化范围小于1.2 dB,光谱呈现出极为平坦的状态。同时由于LNOI平台片上损耗极低,该方案可以通过再次级联相位调制器以产生更宽的光谱。

      He等人利用超低功率的近红外泵浦光实现了中红外电光梳的仿真设计[69]。近红外波段的信号光ωs与泵浦光ωp在周期性极化铌酸锂脊形波导(Periodically poled lithium niobate, PPLN)中进行差频,从而产生中红外波段的光载波ωi。经过优化后,该差频过程能够达到500% W−1·cm−2的标准化转换效率,为后续产生中红外光梳提供了条件。ωi将进入x切铌酸锂微环腔中,微环腔经过电光相位调制后,腔中产生电光梳,并通过耦合波导输出。文中通过两种方案实现了上述过程,如图8所示,方案一为在微环腔外进行差频过程,方案二为在微环腔内实现差频产生。方案一在调制系数为β=1.2π、泵浦功率为25 mW时能够产生约600个中红外波段的频率分量,而方案二在调制系数β=0.4π、泵浦功率为5 mW时能够产生约300个中红外波段的频率分量。微环腔极大增强了差频过程的输入功率,使得方案二相较方案一具有更高的光梳产生效率。

      Figure 8.  Schematic of mid-infrared frequency combs generator based on LNOI and their corresponding spectrums[69]. (a) Design 1, the DFG process occurs outside the microring resonator; (b) Power spectrum of the output mid-infrared frequency comb for modulation coefficient β=1.2π in design 1; (c) Design 2, the DFG process occurs in the microring resonator; (d) Power spectrum of the output mid-infrared frequency comb for modulation coefficient β=0.4π in design 2

    • 磷化铟(Indium Phosphide,InP)作为一种重要的III-V族半导体材料,其以纤锌矿和闪锌矿两种晶体形式存在,在室温下分别具有1.42 eV与1.35 eV的直接带隙[70],是实现集成光电芯片的重要材料平台。目前,在InP平台上已经实现了多种集成光学有源器件,如激光器[71-72]、光电探测器[73-74]、半导体光放大器[75]、调制器[76-77],这为实现InP平台上的电光梳[49, 78-79]奠定了基础。

      Andriolli等人实现了首个基于级联光调制器的InP集成电光梳产生器件[48],有望用于实际应用中。该器件具有5 dB/cm的波导损耗及极高的集成度,在4.5 mm×2.5 mm的芯片上集成了DFB反馈激光器、MZM强度调制器、两个相位调制器及一个半导体光放大器,装置如图9所示。MZM强度调制器及相位调制器的半波电压Vπ约为5 V,消光比约为25 dB,但是由于该芯片上电极及50 Ω负载的缺失,调制器的3 dB带宽仅有7 GHz。当施加在MZM及相位调制器上的射频信号频率相同时,能够产生频率间隔为4~5 GHz的28个频率分量,其光谱平坦度为5 dB。同时,该光梳也能够进行频率调谐,当调谐频率为10 GHz时,由于射频电压的限制,梳齿功率降低,导致梳齿数量下降至11根。研究中指出3 dB带宽较小的问题可以通过优化器件结构及外接损耗来提升,且电光梳的调谐性能够进一步拓展至40 GHz。

      Figure 9.  Schematic of an InP integrated EO comb generator[48]. (a) Integrated comb generator PIC schematic; (b) Optical micrograph of the fabricated PIC (Photonic integrated chip, PIC) (Footprint: 4.5 mm× 2.5 mm); (c) PIC-PCB assembly

      为了增加电光梳所产生梳齿的数量,Andriolli与Bontempi等人对图9中的器件结构作了进一步改进[80],采取双驱的MZM调制,且设置施加在相位调制器上的射频频率为MZM射频频率的三倍,从而实现了宽谱电光梳。当MZM与相位调制器施加相同的射频信号时,电光梳可以实现4~8 GHz的频率调谐,随着调谐频率的增加,光梳的平坦度逐渐下降。当调谐频率为4 GHz时,平坦度为3 dB的梳齿数目共有22根,而当调谐频率为8 GHz时,平坦度为3 dB的梳齿数目下降至8根,且总梳齿数目也由81根减少至27根。而当相位调制器上的调谐频率为MZM的三倍时,可以产生44根平坦度为3 dB且间隔为1 GHz的频率分量,此时总梳齿数目为166根。笔者指出对调制器结构进行进一步的优化可以得到更大的调谐带宽与更优的光梳平坦度。

      Nobuhide等人在InP平台上利用MZM实现了平坦电光频率梳的产生[50]。MZM具有n-p-i-n的波导结构及2.3 V的半波电压。研究中指出改变光载波经过MZM两臂后的总相位差,可以改变电光梳的平坦度。当总相位差为π的整数倍时,光梳的平坦度能得到极大提升。在输出功率为0.5 mW的1535 nm激光器泵浦下,能够产生频率间隔为12.5 GHz的9根梳齿,其平坦度<0.8 dB。

    • 硅(Silicon,Si)材料具有非常优异的光学性质,折射率高(n=3.45)、热导率大、具有极高的光学损伤阈值,透明窗口宽(1.1~7 μm)且具有较强的三阶非线性光学效应[81],使其成为理想的光学材料。再加上片上集成工艺成熟、价格低廉,智能切割技术的应用[82-83]使得硅薄膜(Silicon on insulator, SOI)的厚度大大减小,提升了硅基集成光子芯片的集成度,使其成为集成光子学中的重要平台[84-88]。硅材料作为Oh点群材料中的一员[89],具有反演对称性,在偶极近似条件下,其二阶非线性极化张量为零,即硅不具有倍频、差频及线性电光效应在内的二阶非线性光学效应,限制了硅基电光调制器的发展应用。

      研究人员发现,通过对硅施加电场可以打破硅的反演对称性,从而使其具有场致倍频效应[90]。进一步的研究表明硅材料表面的内建电场还能令硅产生包括线性电光效应在内的其他二阶非线性光学效应[91],使得SOI上实现电光梳成为可能。目前SOI平台上已实现了许多性能优异的电光梳[53, 92-94],且在光通信[95-96]、微波光子学[52, 97]及双光梳探测[98]等领域获得了广泛应用。

      Nagarjun等人利用单个PN电光相位调制器实现了硅基平台上高重频、稳定性好且可调谐的集成电光梳[51]。PN相位调制器长4.5 mm,P区和N区的掺杂浓度均为1018/cm3,这既防止了高掺杂导致的过度吸收,同时还提供了足够的调制性能。在27 dBm的射频信号调制下,在20 dB带宽内产生了8根梳齿,梳齿间隔为10 GHz。在C波段内,还能实现中心频率由1556.6 nm至1557.84 nm的连续调谐,调谐过程中输出光谱波形保持稳定。该器件具有优异的稳定性能,在实验室条件下能够连续工作12 h以上并保持稳定的输出光谱。文中通过模拟仿真证明了利用PIN相位调制器能够实现更为平坦且宽带的电光梳。

      Demirtzioglou等人在SOI平台上利用微环环谐振腔调制器(Microring resonator modulator, MRM)实现了平顶电光梳[99],能够应用于波分复用技术中。MRM具有24 μm直径及104Q值,且同样采用PN结掺杂波导。当MRM上偏置电压为1 V时,MRM恰好达到临界耦合模式状态以实现更好的调制深度。图10(a)~(b)展示了MRM的光学显微照片及掺杂波导的横截面示意图。在10 GHz与20 GHz的两个射频信号驱动下,产生了5个频率分量,其梳齿间隔为10 GHz,梳齿间最大功率差异小于0.7 dB,得到了极为平坦的电光梳,如图10(c)所示。采用两个射频信号驱动的主要目的是产生至少5个10 GHz间隔的频率分量。时域测量结果表示梳齿间有着极强的相干性,构成了占空比为20%的20.3 ps的超短脉冲序列。

      Figure 10.  Schematic of MRM integrated EO comb[99]. (a) Optical micrograph of a microring resonator modulator (Footprint of the MRM and electrical pads: 0.062 mm2); (b) Schematic of waveguide cross section; (c) Generated EO frequency comb at 10 GHz line spacing for a 0.22 V forward bias voltage applied

      Khalil等人则利用基于SiP上的级联MRM以改进电光梳性能[100]。MRM和总线波导间经多模干涉器(Multimode interference)进行耦合传输,如图11(a)所示,MRM波导采用的是PN结构造,而MMI采用的是PIN结构造。两个MRM上各自采用独立的射频信号驱动,研究人员探讨了非对称频率射频驱动对电光梳光谱的影响,实验装置如图11(c)所示。当MRM1及MRM2上的射频频率分别为20 GHz与10 GHz时,输出光谱由5个间隔为10 GHz且幅值变化在4 dB以内的频率分量构成,如图11(d)所示。将MRM1和MRM2上的射频频率调整为5 GHz与15 GHz时,产生了7根间隔为5 GHz而幅值变化在5 dB以内的梳齿。文中指出MRM的带宽是限制梳齿间隔和数目的主要因素,有望进一步提升。

      Figure 11.  Schematic of cascaded MRM integrated EO comb[100]. (a) Schematic of the proposed MRM; (b) Cross-section schematic of the PN junction of the microring; (c) Experimental setup; (d) Comb spectrum demonstrating 5 lines when driving MRM 1 at 20 GHz and MRM 2 at 10 GHz

      Liu等人利用级联MZM同样实现了硅基平台上的平坦电光梳[53],并在此基础上研究了Nyquist波的产生。该器件由两个级联的MZM调制器与MMI组成,MZM同样采用了PN结构造,其长度为3 mm,如图12(a)所示,p区和n区的净掺杂浓度分别为4×1017 cm−3与8×1017 cm−3。MZM具有约3 V的半波电压与约8 dB的消光比,且具有20 dB的插入损耗和约为13.5 GHz的带宽。为了产生Nyquist波,这要求梳齿之间具有相同功率以形成矩形的光梳包络,同时为了能够得到时域上的变换极限脉冲,需要各频率分量之间具有相等或成线性关系的相位。为满足上述要求,研究人员使用15 GHz与5 GHz两个射频信号分别驱动两个光梳,最终获得了9根平坦度为1.83 dB的梳齿,其频率间隔为5 GHz,且在时域上表现为22 ps的Nyquist波,如图12所示。除此之外,利用该器件还能实现C波段不同中心频率的电光梳输出,及2 GHz到5 GHz的频率调谐范围,使其能够在波分复用技术中发挥更大的作用。

      Figure 12.  Schematic of cascaded MZM integrated EO comb generator[53]. (a) Schematic of the cascaded MZMs optical frequency comb generation, the inset shows the cross-sectional view of active arms in the MZM; (b) Measured optical spectrum of the 9-line OFC; (c) Measured Nyquist pulses in the time domain; (d) Comparison of the measured single Nyquist pulse (red solid line) with the calculated theoretical pulse (black dashed line)

    • 除了上文中所叙述的平台,电光梳还在SiN[101]、SOH[102](Silicon-organic hybrid)平台上实现了集成化,并有望应用于其他III-V族材料[103]。其中Weimann等人[102]在SOH平台上的集成电光梳方面做出了一系列研究成果,其利用双驱动的MZM实现了频率间隔为40 GHz的平顶电光梳,输出光谱中包含7个频率分量,具有约为2 dB的平坦度,并成功将其用于光通信应用中。Kowligy等人利用SiN平台上的近红外电光梳通过差频效应实现了中红外的光梳输出[101],其有望应用于凝聚态材料光谱探测及激光外差测量技术。总而言之,许多能够应用于传统电光梳的材料平台,由于材料特性的限制而无法满足高度集成化及高性能要求,使得集成电光梳无法在多种材料平台上实现,目前多材料平台上的集成电光梳研究仍有待进一步探索。

    • 目前随着大数据、自动驾驶及5 G通信的快速发展,人类在信息时代中突飞猛进,这要求通信网络拥有更为短暂的延迟及更大的信息传输量。波分复用技术(Wavelength Division Multiplexing, WDM)即在光纤中同时传输多个波长的载波,在接收端将对各频率分量进行数据读取,从而大大提升了光纤通信中的传输容量[104]。光学频率梳中的梳齿等间距分布,且具有良好的相干性,是波分复用技术中的理想多波长源[105-106],以应用于大数据传输。集成光梳由于其性能优异、集成度高、功耗低等优势,被认为是未来光通信中的重要技术之一,目前研究人员利用集成电光梳已实现了大容量[95, 102, 107]、宽带宽[108]及多波段[109-111]的光通信应用。

      Lin等人搭建了硅基平台上的电光梳[111],并将其成功应用于波分复用系统中,成功实现了5个WDM信道上32 QAM(Quadrature Amplitude Modulation,正交幅度调制)的800 Gb/s的传输速率,误码率远低于0.02。如图13(a)与(b)所示,该研究中采用了基于PN结的双驱MZM构造,其长度为4.5 mm,拥有6 V的半波电压与6.5 dB的嵌入损耗。在20 GHz与40 GHz射频的分别驱动下,产生了5根梳齿,其间隔为20 GHz,光频梳总功率约为14 dBm,拥有高于19 dB的光信噪比,图13(c)展示了输出光谱。光梳后续经过滤波器整形以改进其平坦度与信噪比,随后分别利用5×16 Gbaud的16/32 QAM与5×20 Gbaud的超信道16 QAM对光梳进行调制,最终实现了598 Gb/s、667 Gb/s与747 Gb/s的净传输速率。图13(d)为三种调制情况下WDM信号的误码率大小。

      Figure 13.  Schematic of EOFC for WDM[111]. (a) Illustration of the dual-drive MZM design; (b) Cross section schematic of MZM phase shifter; (c) Output spectrum of generated 5-line comb with 20 GHz spacing; (d) BER of Nyquist-WDM signals of 5×16 Gbaud 16/32 QAM and 5 × 20 Gbaud 16 QAM

      Xu等人利用基于SOI的级联MRM实现了单波长激光泵浦下的低功耗、可调谐且高信噪比的WDM发射模块[96]图14(a)展示了级联MRM构造,其中第一个MRM作为电光梳产生器在正弦波射频信号驱动下工作,其具有约25 GHz的3 dB带宽,且能够产生3根间隔为20 GHz的梳齿。为了使三个频率分量具有相同的功率且能够进行更灵活的数据调制,第一个MRM后级联了三个独立工作的微环调制器,它们共同组成了灵活栅格WDM发射系统。可以通过使用更多的MRM来产生宽谱电光梳,在前两个MRM级联调制的前提下,梳齿数目可以增加至5根,且其信噪比及平坦度都得到了一定程度的提升。为了实现数据传输,文中采用了如图14(b)所示的装置,并在低于4.6 mW的功率下实现了10 Gb/s的二进制振幅键控(On-Off Keying, OOK)数据传输,其几乎不受串扰影响,图13(c)展示了数据传输后的光谱。

      Figure 14.  Schematic of MRM for WDM[96]. (a) Schematic of a flexible-grid WDM silicon photonic transmitter based on cascaded MRMs; (b) Experimental setup for optical comb generation, data transmission, and characterization; (c) Spectrum after data transmission when MRM1 is aligned at 20 GHz comb line with channel 1 (1554 nm), channel 2 (1554.16 nm), and channel 3 (1553.84 nm)

      Weimann等人将基于SOH的集成电光梳成功应用于光通信场景[102],该光梳输出光谱包含7根间隔为40 GHz的梳齿,平坦度约为2 dB。利用25 GHz频率间隔的SOH电光梳及18 Gbaud的16 QAM调制,Weimann等人实现了1.152 Tbit/s的总线路速率及4.9 bit/s/Hz的净效率。在另一个实验中,通过采用7信道的正交相位键控(Quadrature Phase Shift Keying,QPSK),系统复杂度得到了降低,从而实现了长达300 km的数据传输。

    • 双光梳光谱学(Dual-comb Spectroscopy, DCS)采用两台具有微小频率差的光频梳,在接收端进行相干脉冲序列间的异步光取样,从而实现光谱信息的分析与测量,其具有光谱覆盖范围广、灵敏度高、分辨率高、响应时间短及精度高等诸多优势,是精密激光光谱领域的重要技术进展。随着集成光频梳的快速发展,双光梳光谱探测系统的体积、功耗及信噪比等指标参数都得到了显著提升[112-115]。集成电光梳的可调谐性及频率间隔小等的特点,能进一步改进双光谱探测的分辨率与灵活度,因此集成电光梳也成为了当下该领域的研究热点。

      Amirhassan等人利用LNOI平台上的微环电光梳实现了标准大气压下高信噪比的乙炔吸收光谱探测[116]。文中采用LNOI平台上微环具有2.7 dB/m的传输损耗及超过107Q值,能够产生约10 GHz间隔的光梳。利用如图15(a)所示的装置,研究人员实现了对乙炔吸收光谱的探测,使用声光调制器来消除拍频测量中混叠现象,其中光梳1上施加10.45 GHz的射频信号并经过乙炔气室,施加在光梳2上的射频频率为10.45 GHz+250 kHz。光电探测器对光谱1与光梳2的输出光谱进行拍频,获得了如图15(b)所示的光谱,其中包含超过120根梳齿,且拥有约1.2 THz的带宽,其信噪比最高可达60 dB。图15(c)展示了乙炔的吸收光谱,其与仿真结果具有高度的一致性。

      Figure 15.  Schematic of EOFC based on LNOI for DCS[116]. (a) Scheme of DCS with integrated EO microrings (AOFS: acousto-optic frequency shifter, BS: beam splitter, BD: balanced detector, DAU: data acquisition Unit); (b) Measured dual comb spectrum with a measurement time of 195 s; (c) Measured absorption spectra of the acetylene

      Deniel等人则利用硅基电光梳实现了1 GHz分辨率与超过25 GHz带宽的双光梳探测[98],这是首次利用SOI调制器进行的双光梳光谱实验。如图16(a)所示,文中利用MZM实现了电光梳的产生,其中MZM基于PN结构造,长度为4 mm,拥有18 GHz的电光带宽及1.24 dB/mm的片上损耗,能够实现500 MHz至12.5 GHz频率调谐,并产生12个等间距的频率分量。

      Figure 16.  Schematic of EOFC based on MZM for DCS[98]. (a) Top-view schematic of the 4-mm long Si single-drive push-pull MZM; (b) Beat notes for fRF= 1 GHz and ΔfRF = 4 MHz; (c) Experimentally measured transfer function of optical bandpass filter

      利用两个频率相差4 MHz的射频信号分别驱动两个电光梳,双光梳探测系统产生了5个间隔为4 MHz的拍频信号,拍频信号如图16(b)所示。在保持频率差不变的情况下,射频信号能实现1 GHz至12 GHz的调谐。同时,通过改变泵浦光波长,还能够实现不同中心波长(1530~1570 nm)处的双光谱探测。随后研究人员通过测量光学带通滤波器的传递函数,进行了双光梳探测的实验,并获得了1 GHz的分辨率与超过25 GHz的带宽性能,相关结果如图16(c)所示。

      Betancur-Pérez等人实现了InP平台上的THz双光梳探测装置[78],该装置同样能够应用于THz或者光通信系统。该双光梳采用两个级联的相位调制器用于电光梳的产生,并获得了28根间隔为5 GHz的梳齿。文中采用了双边带载波抑制调制技术和非对称的MZI来实现光梳的频移与边带抑制,从而实现了THz量级的信号输出。基于该系统的双光梳探测器在42 GHz的3 dB带宽下,具有55 kV/m的光学灵敏度与小于20.8 Pw/Hz的最小探测功率,在测量透射率为0.15的样品时,该装置在200 ms的积分时间内呈现出约89 dB的平均信噪比。

    • 文中介绍了基于电光调制的集成光频梳的基本原理与研究进展。主要围绕LNOI、InP与SOI平台对集成电光梳进行了综述,在此基础上介绍了当前集成电光梳在光通信及双光梳探测领域的代表性应用。尽管集成电光梳研究取得了一系列重要进展,但目前仍存在许多尚未解决的问题:InP平台上虽然能够通过实现光源、放大器及光频梳在内的多种器件集成,但基于InP平台的梳齿功率仍较低,存在提升空间;基于SOI平台的电光梳具有良好的平坦度,但尚未实现多梳齿光梳,且目前同样仍无法实现片上集成的高功率电光梳;LNOI平台上已经实现了许多高性能的片上电光梳,是当前构建集成电光梳的理想平台,有望进一步在LNOI平台上集成多种光电器件,得到集成度更高的电光梳产生系统以应用于复杂多变的外部环境。同时随着异质集成技术的不断发展,集成电光梳有望在多材料平台上实现,这将进一步拓展集成电光梳的功能和应用领域。

Reference (116)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return