Volume 53 Issue 3
Mar.  2024
Turn off MathJax
Article Contents

Zhang Jie, Huang Min, Dang Xiaoling, Liu Yixin, Chen Yingchao, Chen Jianxin. Research progress and development trends of antimonide-based superlattice infrared photodetectors[J]. Infrared and Laser Engineering, 2024, 53(3): 20230153. doi: 10.3788/IRLA20230153
Citation: Zhang Jie, Huang Min, Dang Xiaoling, Liu Yixin, Chen Yingchao, Chen Jianxin. Research progress and development trends of antimonide-based superlattice infrared photodetectors[J]. Infrared and Laser Engineering, 2024, 53(3): 20230153. doi: 10.3788/IRLA20230153

Research progress and development trends of antimonide-based superlattice infrared photodetectors

doi: 10.3788/IRLA20230153
  • Received Date: 2023-03-20
  • Rev Recd Date: 2023-10-14
  • Publish Date: 2024-03-21
  •   Significance   Infrared focal plane arrays (FPAs) are indispensable core components in many fields such as aerospace remote sensing, deep space exploration, national defense and security, resource exploration, and industrial control. In recent years, the antimonide-based superlattice is drawing the research interests from all over the world. It has become the prominent candidate to achieve infrared detectors with high-uniform large arrays, extended detection wavelengths to long wave and very long wave, two-color detection and so forth, due to its excellent uniformity, low dark current, relatively high quantum efficiency as well as the tunable detection wavelengths which almost covers the full infrared wavebands from near-infrared (NIR) to very long wave infrared (VLWIR). The basic technical principles of the antimonide-based superlattice for infrared detection, the several development stages and key results, as well as the development trends of the Type-II superlattice infrared focal plane arrays, are sequentially introduced and discussed. As antimonide-based superlattice evolves towards higher pixel density, larger specifications, higher operating temperature, longer detecting wavelength, two-color (multi-color), avalanche devices, it is depicted that the antimonide-based superlattice will always play an important role in many fields especially for infrared sensing and imaging.   Progress  The development process of antimonide-based superlattice focal plane detectors is divided into three stages. The first stage spans from 1980s to the very beginning of 21st century. This stage includes the proposal of the concept of superlattice infrared detection technology, theoretical calculation and analysis of the performance of superlattice detectors, epitaxial growth of superlattice materials (first MBE growth by HRL), and some preliminary research on basic optoelectronic properties. The research results of this stage demonstrate the decent capabilities of superlattice materials for infrared detection. The second stage spans from the very beginning of 21st century to year about 2010. This stage mainly focuses on breakthroughs in key technologies for the preparation of high-performance focal plane devices. Particularly, the advanced heterostructures are studied and prepared to suppress the dark current of superlattice long-wavelength detectors. And the etching and sidewall passivation technologies of superlattice materials are explored to prepare superlattice FPA devices. Through these technical breakthroughs, FPAs with 1024 pixel×1024 pixel (Tab.1) and detecting wavelength longer than 10 μm are achieved. The third stage starts from about 2010 and until now. This stage is mainly about the improvement of superlattice focal plane preparation capabilities and the realization of engineering applications, and government becomes an important strength which quickly and efficiently promotes the developments of superlattice technologies. Under the support of related government agencies, Western countries with more technological accumulation make breakthroughs in key technologies such as superlattice structure design, material growth, and chip preparation processes. The VISTA project dominated by American government is a typical case with successful results and deep influence. FPAs with millions of pixels (up to 6 K×4 K), pixel pitches of less than 10 micrometers (e.g. ~5 μm), operating temperature as high as ~180 K are reported. Such superlattice FPAs have already been used in super transport aircrafts, the International Space Station (Fig.7), hyperspectral equipment and so forth.   Conclusions and Prospects   Since the idea of InAs/GaSb superlattice infrared detector was first proposed, it has been over 30 years during which domestic and foreign researchers have successively obtained a series of infrared detectors with large array, high temperature operation, long wave/multi-color detection, through structural design optimization and preparation technology improvement. Antimonide-based superlattice FPAs show advantages such as high uniformity, high stability, and high preparation controllability, and are widely used in aerospace fields such as infrared remote sensing and imaging. Now, to fabricate detectors with higher performance, higher requirements for superlattice materials are put forward. Essentially, materials with longer minor carrier lifetime, higher quantum efficiency and novel structure are explored. Based on the deeper studies, superlattice infrared focal planes are practically developing towards higher pixel density, larger specifications, higher operating temperature, longer detecting wavelength, two-color (multi-color) detection, avalanche devices, etc.
  • [1] Rogalski A. HgCdTe infrared detector material: history, status and outlook [J]. Reports on Progress in Physics, 2005, 68(10): 2267. doi:  10.1088/0034-4885/68/10/R01
    [2] 杨建荣. 碲镉汞材料物理与技术 [M]. 北京: 国防工业出版社, 2012.
    [3] Vurgaftman I, Meyer J R, Ram-mohan L R. Band parameters for III–V compound semiconductors and their alloys [J]. J Appl Phys, 2001, 89(11): 5815-5875. doi:  10.1063/1.1368156
    [4] Esaki L, Tsu R. Superlattice and negative differential conductivity in semiconductors [J]. IBM Journal of Research and Development, 1970, 14(1): 61-65. doi:  10.1147/rd.141.0061
    [5] Sai-halasz G A, Tsu R, Esaki L. A new semiconductor superlattice [J]. Appl Phys Lett, 1977, 30(12): 651-653. doi:  10.1063/1.89273
    [6] Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors [J]. J Appl Phys, 1987, 62(6): 2545-2548. doi:  10.1063/1.339468
    [7] Grein C H, Young P M, Ehrenreich H. Minority carrier lifetimes in ideal InGaSb/InAs superlattices [J]. Appl Phys Lett, 1992, 61(24): 2905-2907. doi:  10.1063/1.108480
    [8] Chow D H, Miles R H, Söderström J R, et al. Growth and characterization of InAs/Ga1−xInxSb strained-layer superlattices [J]. Appl Phys Lett, 1990, 56(15): 1418-1420. doi:  10.1063/1.102486
    [9] Chow D H, Miles R H, Hunter A T. Effects of interface stoichiometry on the structural and electronic properties of Ga1−xInxSb/InAs superlattices [J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 888-891.
    [10] Omaggio J P, Meyer J R, Wagner R J, et al. Determination of band gap and effective masses in InAs/Ga1−xInxSb superlattices [J]. Appl Phys Lett, 1992, 61(2): 207-209. doi:  10.1063/1.108219
    [11] Youngdale E R, Meyer J R, Hoffman C A, et al. Auger lifetime enhancement in InAs-Ga1−xInxSb superlattices [J]. Appl Phys Lett, 1994, 64(23): 3160-3162. doi:  10.1063/1.111325
    [12] Xie Q, Nostrand J E V, Brown J L, et al. Arsenic for antimony exchange on GaSb, its impacts on surface morphology, and interface structure [J]. J Appl Phys, 1999, 86(1): 329-337. doi:  10.1063/1.370733
    [13] Yang M J, Bennett B R. InAs/GaSb infrared photovoltaic detector at 77 K [J]. Electronics Letters, 1994, 30(20): 1710-1711. doi:  10.1049/el:19941138
    [14] Johnson J L, Samoska L A, Gossard A C, et al. Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb [J]. J Appl Phys, 1996, 80(2): 1116-1127. doi:  10.1063/1.362849
    [15] Fuchs F, Weimer U, Pletschen W, et al. High performance InAs/Ga1-xInxSb superlattice infrared photodiodes [J]. Appl Phys Lett, 1997, 71(22): 3251-3253. doi:  10.1063/1.120551
    [16] Razeghi M, Wei Y, Bae J, et al. Type II InAs/GaSb superlattices for high-performance photodiodes and FPAs [C]//SPIE, 2003, 5246: 501-511.
    [17] Walther M, Rehm R, Fuchs F, et al. 256×256 focal plane array midwavelength infrared camera based on InAs/GaSb short-period superlattices [J]. Journal of Electronic Materials, 2005, 34(6): 722-725. doi:  10.1007/s11664-005-0010-z
    [18] Nguyen B M, Razeghi M, Nathan V, et al. Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes [C]//SPIE, 2007, 6479: 113-122.
    [19] Ting D Z Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector [J]. Appl Phys Lett, 2009, 95(2): 023508. doi:  10.1063/1.3177333
    [20] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature [J]. Appl Phys Lett, 2006, 89(15): 151109. doi:  10.1063/1.2360235
    [21] Nguyen B M, Hoffman D, Delaunay P Y, et al. Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier [J]. Appl Phys Lett, 2007, 91(16): 163511. doi:  10.1063/1.2800808
    [22] Rehm R, Walther M, Schmitz J, et al. InAs/GaSb superlattice focal plane arrays for high-resolution thermal imaging [J]. Opto-Electronics Review, 2006, 14(1): 19-24.
    [23] Delaunay P-Y, Hood A, Nguyen B M, et al. Passivation of type-II InAs∕GaSb double heterostructure [J]. Appl Phys Lett, 2007, 91(9): 091112. doi:  10.1063/1.2776353
    [24] Huang E K, Hoffman D, Nguyen B-M, et al. Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes [J]. Appl Phys Lett, 2009, 94(5): 053506. doi:  10.1063/1.3078282
    [25] Tan S L, Goh Y L, Sankha D, et al. Dry etching and surface passivation techniques for type-II InAs/GaSb superlattice infrared detectors [C]//SPIE, 2010, 7838: 318-325.
    [26] Gunapala S, Ting D, Hill C, et al. Demonstration of 1 K×1 K long-wave and mid-wave superlattice infrared focal plane arrays [C]//SPIE, 2010, 7808: 13-18.
    [27] Manurkar P, Ramezani-darvish S, Nguyen B M, et al. High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices [J]. Appl Phys Lett, 2010, 97(19): 3.
    [28] Sundaram M, Reisinger A, Dennis R, et al. 1024×1024 LWIR SLS FPAs: status and characterization [C]//SPIE, 2012, 8353: 325-333.
    [29] Robert R, Martin W, Johannes S, et al. Second and third generation thermal imagers based on type-II superlattice photodiodes [C]//SPIE, 2006, 6294: 20-26.
    [30] Huang E K, Haddadi A, Chen G, et al. Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance [J]. Opt Lett, 2011, 36(13): 2560-2562. doi:  10.1364/OL.36.002560
    [31] Huang E K, Hoang M A, Chen G, et al. Highly selective two-color mid-wave and long-wave infrared detector hybrid based on type-II superlattices [J]. Opt Lett, 2012, 37(22): 4744-4746. doi:  10.1364/OL.37.004744
    [32] Sharifi H, Roebuck M, Terterian S, et al. Advances in III-V bulk and superlattice-based high operating temperature MWIR detector technology [C]//SPIE, 2017, 10177: 168-173.
    [33] Ting D Z, Soibel A, Khoshakhlagh A, et al. Mid-wavelength high operating temperature barrier infrared detector and focal plane array [J]. Appl Phys Lett, 2018, 113(2): 021101. doi:  10.1063/1.5033338
    [34] Jones R, Allen S, Chmielewski D, et al. Advancements in strained layer superlattice-based infrared focal plane arrays at L3 Harris [C]//SPIE, 2023, 12534: 125340G.
    [35] Delmas M, Höglund L, Ivanov R, et al. HOT SWaP and HD detectors based on Type-II superlattices at IRnova [C]//SPIE, 2022, 12107: 185-192.
    [36] Gurga A, Nosho B, Terterian S, et al. Dual-band MWIR/LWIR focal plane arrays based on III-V strained-layer superlattices [C]//SPIE, 2018, 10624: 113-119.
    [37] Delaunay P-Y, Nosho B Z, Gurga A R, et al. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL [C]//SPIE, 2017, 10177: 156-167.
    [38] Jhabvala M, Jennings D, Tucker C, et al. Strained-layer-superlattice-based compact thermal imager for the International Space Station [J]. Appl Opt, 2019, 58(20): 5432-5442. doi:  10.1364/AO.58.005432
    [39] Jhabvala M, Choi K-K, Gunapala S, et al. QWIPs, SLS, Landsat and the International Space Station [C]//SPIE, 2020, 11288: 1128802.
    [40] Gunapala S, Ting D, Rafol S, et al. High operating temperature T2SL digital focal plane arrays for earth remote sensing instruments [C]//SPIE, 2021, 11741: 130-137.
    [41] Rogalski A. InAs/GaSb type-II superlattices versus HgCdTe ternary alloys: future prospect [C]//SPIE, 2017, 10433: 219-237.
    [42] Olson B V, Shaner E A, Kim J K, et al. Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice [J]. Appl Phys Lett, 2012, 101(9): 092109. doi:  10.1063/1.4749842
    [43] Huang M, Chen J, Xu Z, et al. InAs/GaAsSb type-II superlattice LWIR focal plane arrays detectors grown on InAs substrates [J]. IEEE Photonics Technology Letters, 2020, 32(8): 453-456. doi:  10.1109/LPT.2020.2973204
    [44] Allen K W, Abolmaali F, Duran J M, et al. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres [J]. Appl Phys Lett, 2016, 108(24): 241108. doi:  10.1063/1.4954190
    [45] Soibel A, Keo S A, Fisher A, et al. High operating temperature nBn detector with monolithically integrated microlens [J]. Appl Phys Lett, 2018, 112(4): 041105. doi:  10.1063/1.5011348
    [46] Ghosh S, Mallick S, Banerjee K, et al. Low-noise mid-wavelength infrared avalanche photodiodes [J]. Journal of Electronic Materials, 2008, 37(12): 1764-1769. doi:  10.1007/s11664-008-0542-0
    [47] Huang J, Banerjee K, Ghosh S, et al. Dual-carrier high-gain low-noise superlattice avalanche photodiodes [J]. IEEE Transactions on Electron Devices, 2013, 60(7): 2296-2301. doi:  10.1109/TED.2013.2264315
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(2)

Article Metrics

Article views(110) PDF downloads(61) Cited by()

Related
Proportional views

Research progress and development trends of antimonide-based superlattice infrared photodetectors

doi: 10.3788/IRLA20230153
  • 1. A Center of Equipment Development Department, Beijing 100034, China
  • 2. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

Abstract:   Significance   Infrared focal plane arrays (FPAs) are indispensable core components in many fields such as aerospace remote sensing, deep space exploration, national defense and security, resource exploration, and industrial control. In recent years, the antimonide-based superlattice is drawing the research interests from all over the world. It has become the prominent candidate to achieve infrared detectors with high-uniform large arrays, extended detection wavelengths to long wave and very long wave, two-color detection and so forth, due to its excellent uniformity, low dark current, relatively high quantum efficiency as well as the tunable detection wavelengths which almost covers the full infrared wavebands from near-infrared (NIR) to very long wave infrared (VLWIR). The basic technical principles of the antimonide-based superlattice for infrared detection, the several development stages and key results, as well as the development trends of the Type-II superlattice infrared focal plane arrays, are sequentially introduced and discussed. As antimonide-based superlattice evolves towards higher pixel density, larger specifications, higher operating temperature, longer detecting wavelength, two-color (multi-color), avalanche devices, it is depicted that the antimonide-based superlattice will always play an important role in many fields especially for infrared sensing and imaging.   Progress  The development process of antimonide-based superlattice focal plane detectors is divided into three stages. The first stage spans from 1980s to the very beginning of 21st century. This stage includes the proposal of the concept of superlattice infrared detection technology, theoretical calculation and analysis of the performance of superlattice detectors, epitaxial growth of superlattice materials (first MBE growth by HRL), and some preliminary research on basic optoelectronic properties. The research results of this stage demonstrate the decent capabilities of superlattice materials for infrared detection. The second stage spans from the very beginning of 21st century to year about 2010. This stage mainly focuses on breakthroughs in key technologies for the preparation of high-performance focal plane devices. Particularly, the advanced heterostructures are studied and prepared to suppress the dark current of superlattice long-wavelength detectors. And the etching and sidewall passivation technologies of superlattice materials are explored to prepare superlattice FPA devices. Through these technical breakthroughs, FPAs with 1024 pixel×1024 pixel (Tab.1) and detecting wavelength longer than 10 μm are achieved. The third stage starts from about 2010 and until now. This stage is mainly about the improvement of superlattice focal plane preparation capabilities and the realization of engineering applications, and government becomes an important strength which quickly and efficiently promotes the developments of superlattice technologies. Under the support of related government agencies, Western countries with more technological accumulation make breakthroughs in key technologies such as superlattice structure design, material growth, and chip preparation processes. The VISTA project dominated by American government is a typical case with successful results and deep influence. FPAs with millions of pixels (up to 6 K×4 K), pixel pitches of less than 10 micrometers (e.g. ~5 μm), operating temperature as high as ~180 K are reported. Such superlattice FPAs have already been used in super transport aircrafts, the International Space Station (Fig.7), hyperspectral equipment and so forth.   Conclusions and Prospects   Since the idea of InAs/GaSb superlattice infrared detector was first proposed, it has been over 30 years during which domestic and foreign researchers have successively obtained a series of infrared detectors with large array, high temperature operation, long wave/multi-color detection, through structural design optimization and preparation technology improvement. Antimonide-based superlattice FPAs show advantages such as high uniformity, high stability, and high preparation controllability, and are widely used in aerospace fields such as infrared remote sensing and imaging. Now, to fabricate detectors with higher performance, higher requirements for superlattice materials are put forward. Essentially, materials with longer minor carrier lifetime, higher quantum efficiency and novel structure are explored. Based on the deeper studies, superlattice infrared focal planes are practically developing towards higher pixel density, larger specifications, higher operating temperature, longer detecting wavelength, two-color (multi-color) detection, avalanche devices, etc.

    • 1800年,英国科学家William Herschel发现了红外线后,开启了人们对红外技术的研究。二次世界大战后,随着半导体材料技术以及微电子技术的进步,光电型红外探测器取得了飞速的发展。特别地,自20世纪50年代碲镉汞问世以来,由于其高的吸收系数和量子效率、探测波长可调并可覆盖整个红外波段、以及较高的载流子迁移率等优点,在红外探测领域占据了重要地位[1-2]。碲镉汞红外探测器的发展已经历了第一代单元探测器、第二代中小型规模焦平面探测器、第三代大规模高性能红外焦平面等发展阶段。第二、第三代碲镉汞红外焦平面已经实现工程化和产品化,应用于航天遥感、深空探测、国防安全、资源勘探、工业控制等诸多领域。

      当前,红外焦平面探测器正向着更高的像素集成度、更高的探测灵敏度、更高的温度分辨率、更高的工作温度、更宽的光谱覆盖度等方向发展。在此期间,新的材料技术不断涌现,特别是随着低维半导体材料的发展,基于“能带工程”的 InAs/GaSb II类超晶格(T2SL)红外探测器受到了人们的重视和关注,并获得了突破性的发展。

      文中简要介绍InAs/GaSb超晶格红外探测器的技术特点和发展历程,并对后续发展趋势作了初步的展望和探讨。

    • 超晶格是由两种晶格匹配良好的半导体材料交替重复生长而形成的周期性结构,每一层的厚度通常在纳米尺度。根据组成材料相互间能带排列特点,超晶格一般分为I类超晶格和II类超晶格。在III-V族化合物半导体中,InAs、GaSb、AlSb之间可组成不同类别的能带排列,GaSb/AlSb组成I类能带排列,InAs/GaSb、InAs/AlSb组成II类能带排列。特别的,InAs导带底能量比GaSb价带顶能量低约150 meV,当InAs和GaSb结合时,两者形成“破隙型”II类能带排列,电子被限制在InAs层中,而空穴被限制在GaSb层中。当两者组成超晶格时,相邻InAs和GaSb层中电子和空穴会由于相互作用分别形成电子微带和空穴微带,如图1所示,图中红色水平线表示GaSb和InAs的导带底能量位置,绿色水平线表示GaSb和InAs价带顶能量位置;电子微带和空穴微带分别用蓝色和粉红色水平线标识,蓝色和粉红色曲线分别表示电子波函数和空穴波函数;电子微带的能量展宽大于空穴微带。当有光子入射时,激发电子从空穴微带到电子微带的跃迁,形成光吸收。另外,InAs、GaSb、AlSb的晶格常数十分相近,分别为6.0584 Å (1 Å=10−10 m)、6.0959 Å和6.1355 Å[3],这十分有利于外延生长出高质量的超晶格材料。

      Figure 1.  Schematic energy band diagram of InAs/GaSb superlattice

      电子微带与空穴微带的能量差即为超晶格的有效禁带宽度,随着InAs层和GaSb层厚度的改变而改变。对InAs/GaSb II类超晶格的能带结构进行计算和模拟,可以获得超晶格材料光电特性等信息。图2是InAs/GaSb 超晶格的截止波长随InAs厚度变化关系,通过改变InAs层的厚度,可以调节超晶格的截止波长,实现短波红外、中波红外和长波红外等不同谱段的红外探测。

      Figure 2.  Relationship between the cut-off wavelengths and InAs layer thicknesses of InAs/GaSb T2 SLs (The GaSb layer is 2.1 nm)

      总体来说,InAs/GaSb超晶格红外探测技术具有如下特点:

      1) 改变周期厚度可以调节InAs/GaSb超晶格的禁带宽带(响应截止波长),因此,可以通过结构设计来灵活调节超晶格探测器的光电响应特性,响应波段可以覆盖短波至甚长波的整个红外谱段,并实现多色探测。

      2) InAs/GaSb超晶格结构可以吸收垂直入射光。理论计算表明,InAs/GaSb超晶格可达到与HgCdTe材料相当的吸收系数,因此具有较高的量子效率。

      3) 在InAs/GaSb超晶格结构中,由于轻、重空穴带的分离,抑制了Auger复合速率。在理论上,InAs/GaSb超晶格比HgCdTe具有更高的探测率。

      4) 相比HgCdTe材料,InAs/GaSb超晶格有更大的有效质量,有助于抑制长波探测器的隧穿暗电流。

      5) 现代材料生长技术,如分子束外延技术,可以在单原子层精度上控制材料的生长,十分有利于材料性能的可控性、稳定性和可重复性。

      6) InAs/GaSb超晶格是III-V族化合物半导体材料,材料生长与器件工艺较为成熟,有利于实现大规格、高均匀性焦平面器件。

    • 该阶段主要是超晶格红外探测技术概念的提出、超晶格探测器性能的理论计算分析、超晶格材料外延生长和基本光电特性研究,初步证实了超晶格材料具有优良的红外探测性能。

      超晶格概念是20世纪70年代美国国际商用机器(IBM)公司的江琦、朱兆详等人提出的[4],指出电子在沿超晶格材料生长方向运动将受到超晶格周期势的影响,形成与自然界材料性能迥异的特性,分子束外延技术的发展又允许人们生长出高质量的超晶格材料。1977年,江琦、朱兆祥等人又提出了锑化物(InAs/GaSb) II类超晶格的概念[5]

      1987年,美国洛斯阿拉莫斯国家实验室的Smith和施乐公司的Mailhiot提出了将InAs/GaSb超晶格材料用于红外探测的设想[6]。与碲镉汞材料相比,尽管InAs/GaSb超晶格的跃迁矩阵元较小,但它具有较大的有效质量,也就是具有较大的联合态密度,因此,两者具有相似的吸收系数。Smith也研究了超晶格材料中的Auger复合过程,证明可以通过优化能带结构来分离重空穴带和轻空穴带,抑制Auger复合,因此,在理论上InAs/GaSb超晶格具有比碲镉汞更长的少子寿命。1992年,美国哈佛大学的研究人员从理论上计算了超晶格材料的少子寿命,表明由于轻、重空穴带的分离,InAs/GaSb超晶格在禁带宽度对应于截止波长为5~11 μm的范围内,p型Auger复合速率得到了极大的抑制[7]

      进入20世纪90年代,一些国际著名的研究机构相继开展了InAs/GaSb超晶格材料生长及其红外光电特性的实验研究。美国T. J. Waston应用物理研究所和休斯实验室(HRL)于1990年首次采用分子束外延成功生长出了InAs/GaInSb超晶格材料[8],生长在GaAs衬底上的超晶格周期结构为3.7 nm InAs/2.5 nm Ga0.75In0.25Sb,采用光荧光方法测试得到超晶格的禁带宽度为140 meV,与Smith等人的理论预期一致。1992年,HRL实验室研究了分子束外延过程中界面化学计量比对InAs/GaInSb超晶格性能的影响,指出在外延过程中可以选择“类GaInAs”或“类InSb”界面,不同的界面层会影响超晶格的禁带宽度和本底载流子浓度等特性[9]。1992年,美国海军实验室采用磁光和磁输运方法研究长波超晶格材料的有效质量,测试得到电子有效质量比同波长碲镉汞的电子有效质量大四五倍[10]。1994年,美国海军实验室等单位的研究人员采用光电导响应测试方法结合K·P计算,在理论和实验上证明了超晶格的Auger寿命比同波长的碲镉汞材料大两个数量级[11]。1999年,美国空军实验室研究了分子束外延过程中As/Sb原子的置换过程,及其对超晶格界面结构、形貌的影响,并获得了高质量的超晶格外延材料[12]

      在器件特性研究方面,美国海军实验室的Yang和Bennett等人于1994年首次报道了单元的InAs/GaSb II类超晶格红外探测器,在77 K温度下响应截止波长为8 μm,电流响应率为0.07 A/W[13]。美国加州大学圣特芭芭拉分校于1996年报道了InAs/GaSb超晶格异质结红外探测器,在78 K温度下,响应截止波长为10.6 μm;在8.8 μm波长时,探测率达到1×1010 cm·Hz1/2/W,初步证实了采用超晶格获得高性能长波红外探测器的可行性[14]。1997年,德国弗朗霍夫应用固体物理研究所(IAF)报道了高性能的8 μm波长超晶格红外单元探测器,其电流响应率达到2 A/W,在77 K温度下探测器的零偏结阻抗(R0A)为1 kΩ·cm2,热噪声限峰值探测率超过1012 cm·Hz1/2/W[15]

    • 该阶段主要聚焦于突破高性能焦平面器件制备的关键技术。采用先进的异质结构抑制超晶格长波探测器的暗电流;研究超晶格材料的刻蚀和侧壁钝化技术,制备出超晶格面阵器件。

      2003年,美国西北大学首次报道了超晶格原理验证焦平面[16],器件规格为256×256,响应截止波长为8 μm。该器件的台面侧壁没有钝化,为了消除p-型掺杂GaSb衬底的红外吸收,研究人员将GaSb衬底减薄至10~40 μm等不同厚度,相应的噪声等效温差为0.1~0.3 K。2005年,德国IAF报道了第一个高性能的超晶格中波红外焦平面[17],器件规格为256×256,在77 K 温度下响应截止波长为5.4 μm,在5 ms积分时间下噪声等效温差为11.1 mK。随后,美国西北大学也实现了超晶格中波红外焦平面,焦平面规模320×256,像元中心距30 μm,81 K工作温度下噪声等效温差达到10 mK。由此,InAs/GaSb超晶格在红外成像探测领域的价值和前景为人们所认识,美国等国家开始将超晶格列入科技发展专项计划,给予持续支持。

      长波探测是超晶格技术发展的一个重要方向,而降低暗电流是长波红外探测器研究工作的一个重要内容。对于锑化物超晶格探测器,利用其灵活的能带结构调节能力以及分子束外延低维材料生长能力,国外各研究机构设计、制备出了多种宽禁带势垒的探测器结构来抑制暗电流,如pπMn结构、CBIRD结构、nBn结构等[18-21]。上述不同结构的基本思想是利用宽禁带势垒层与吸收区形成异质结,从而达到抑制产生-复合电流的效果。

      2007年,美国西北大学报道了带有“M”结构的InAs/GaSb超晶格长波红外探测器。该结构由AlSb/GaSb/InAs/GaSb/AlSb复合结构组成势垒层,由于该复合结构的能带排列形似英文字母“M”而得名。由此组成的pπMn结构超晶格长波红外探测器比不带有势垒结构的探测器的暗电流低了一个数量级,77 K温度下,截止波长为10.5 μm的长波探测器其零偏结阻抗达到200 Ω·cm2。2009年,美国喷气推进实验室(JPL)报道了超晶格互补势垒红外探测器(CBIRD),该器件在吸收区两端分别插入一个电子阻挡势垒和一个空穴阻挡势垒,以抑制扩散电流和产生复合电流,如图3所示。在77 K温度下,器件的响应截止波长为9.9 μm,暗电流密度为0.99×10−5 A/cm2 (0.2 V偏压),响应率达到1.5 A/W,峰值探测率达到1.1×1011 cm·Hz1/2/W。

      Figure 3.  Schematic energy band diagram of CBIRD structure at zero bias voltage (The red solid line is the conduction band edge, the blue dashed line is the heavy-hole valence band edge, and the black dashed line is the Fermi level) [18-20]

      像元台面刻蚀与侧壁钝化是超晶格焦平面制备研究的一个重要内容。在台面侧壁,由于半导体周期性晶格结构的突然中断,会引起能带在表面的弯曲,从而使得接近表面的半导体层内形成电荷累积,甚至引起表面反型,这会导致在表面形成导电通道。另外,在刻蚀等工艺过程中产生的损伤、沾污或者氧化物等也可能引起表面势能的变化,在带隙内形成载流子陷阱,增加隧穿电流。2005年,德国IAF报道了较系统的超晶格的湿法腐蚀、表面清洁、表面钝化等工艺过程,并初步研究了锑化物表面的硫化铵钝化[22]。2007年,美国西北大学报道了采用宽势垒超晶格(截止波长5 μm)探测器结构结合SiO2、Na2S加 SiO2双层等不同钝化方法来抑制长波探测器的暗电流[23],器件的截止波长为11 μm,液氮温度下零偏结阻抗达到13 Ω·cm2。2009年,美国西北大学进一步采用感应耦合等离子(ICP)刻蚀技术制备超晶格探测器[24],截止波长为9.3 μm的器件,77 K温度下暗电流达到扩散限,其密度为4.1×10−6 A/cm2。美国新墨西哥州立大学也在超晶格焦平面器件制备方面开展了系统的研究[25],他们研究了不同刻蚀速率下ICP干法刻蚀GaSb、InAs和InAs/GaSb超晶格的表面形貌,优化了刻蚀工艺的条件,较好地抑制了侧壁漏电。

      随着超晶格探测器结构的不断优化,器件制备工艺水平的提升,基于高质量分子束外延超晶格材料,结合前期建立的红外焦平面技术(如读出电路、铟柱混成互联等),相关研究机构相继研制出了320×256、640×512、1024×1024等不同规格的超晶格红外焦平面。美国JPL采用CBIRD结构于2010年报道了第一个百万像素(1024×1024)超晶格长波红外焦平面,器件截止波长为11.5 μm,噪声等效温差为53 mK[26]。同年,美国西北大学报道了采用pπMn结构实现的面阵规模为1024×1024的百万像素级InAs/GaSb II类超晶格长波红外焦平面探测器[27],该器件在液氮温度下噪声等效温差(NETD)为23.6 mK。美国的QmagiQ公司于2012年报道了面阵规模为1024×1024的InAs/GaSb II类超晶格长波红外焦平面探测器[28],50%响应截止波长为9.5 μm,液氮温度下NETD为30 mK。表1列出了在此期间报道的超晶格长波1024×1024焦平面探测器的主要性能指标。

      InstitutionDevice structureWavelength/μmPixel pitch/μmNETD/mKOperating temperature/K
      JPLCBIRD11.519.55380
      NWUpπMn111823.681
      QmagiQ-9.5183077

      Table 1.  Main performance parameters of reported superlattice 1024×1024 long wave infrared focal planes

      双色或多色探测器具备多谱段探测能力,可显著提升识别距离、抗红外干扰与抗伪装能力,是新一代焦平面探测器重点发展方向之一。锑化物超晶格材料能带灵活可调及宽谱响应的特性,使得其成为制备双色、多色探测领域的优选技术。各研究机构先后报道了基于该材料体系的中/中波、中/长波、长/长波双色焦平面探测器。

      2006年,德国IAF报道了首个超晶格中/中波双色焦平面探测器[29],面阵规模为384×288,77 K温度下可同时实现3~4 μm (蓝带)和4~5 μm (红带)双波段探测,NETD分别优于17 mK (蓝)和30 mK (红)。2011年,美国西北大学报道了320×256长波/长波叠层双波段超晶格焦平面探测器[30],两个长波波段NETD分别达到19.5 mK和20.8 mK。2012年,美国西北大学报道了中波/长波双色红外焦平面,在77 K温度下,长波的50%截止波长为11.2 μm,中波的工作波段为3~4.7 μm,320×256规格的焦平面器件在中波和长波波段的噪声等效温差分别为~10 mK和~30 mK[31]表2列出了在此期间报道的超晶格红外双色焦平面器件的主要技术参数。

      InstitutionArray formatWavelength/μmPixel pitch/μmOperating temperature/KNEDT/mK
      IAF288×3844.0/5.0407714.3/25.9
      NWU320×2569.5/13307719.5/20.8
      NWU320×2565.2/113077~10/~30

      Table 2.  Main performance parameters of reported two-color superlattice long wave infrared focal planes

    • 在相关政府机构的支持下,西方技术先进国家突破了超晶格结构设计、材料生长、芯片制备工艺等关键技术,多家研发机构先后获得高性能的超晶格长波大面阵器件和双色焦平面器件。这些成果的取得也使人们充分认识到超晶格技术在红外探测领域的意义和价值。在此基础上,2011年,美国启动了“重要红外传感器技术加速计划 (VISTA)”,这是一个由政府主导的,包括JPL、MIT林肯实验室、Sandia国家实验室、海军实验室等研究结构,以及休斯实验室、洛克-马丁公司、L3辛辛那提电子公司等行业领先公司的联合体,技术链涵盖了衬底制备、超晶格材料外延生长、焦平面芯片制备工艺、读出电路设计、超晶格组件集成等。在5年时间内,VISTA计划在高性能长波、中长波双色、超大面阵焦平面、高温工作(HOT)焦平面器件等多方面获得了进一步的发展。

      在高密度像元中波红外焦平面方面突破了高深宽比台面干法刻蚀、台面侧壁钝化和微小In柱生长技术,VISTA计划成功研制出了10 μm 像元尺寸2 K×2 K、4 K×4 K规格和5 μm 像元尺寸2 K×1 K规格的超晶格中波焦平面。2 K×2 K/10 μm器件的响应截止波长为4.6 μm,在120 K和150 K工作温度下,噪声等效温差分别为22 mK和30 mK,有效像元率99.8%。图4为5 μm像元尺寸的扫描电镜(SEM)照片[32],台面大小为4.5 μm,填充率大于80%。2 K×1 K/5 μm器件在150 K工作温度下,F数为2.3时,噪声等效温差小于20 mK,有效像元率优于99.9%。

      Figure 4.  SEM of superlattice detector with 5 μm pixel pitch[32]

      2018年,美国JPL报道了基于InAs/InAsSb超晶格的中波高工作温度焦平面的结果,50%截止波长为5.4 μm,170 K工作温度下噪声等效温差(NETD)为26.6 mK,图5(a)、(b)分别为在160 K和170 K工作温度下的成像示意图[33]。近年来,IRnova公司和L3 Harris公司也已相继实现工作温度高于180 K的高质量中波焦平面成像演示[34-35]

      Figure 5.  Photographs of mid-wave infrared superlattice focal plane imaging at 160 K and 170 K operating temperatures[33]

      在中长波双色焦平面方面,VISTA计划实现了12 μm像元尺寸1280×720超晶格中/长波双色焦平面探测器。80 K工作温度下,中波波段的NETD为14.9 mK,有效像元率为99.91%,长波波段的NETD为28.1 mK,有效像元率为99.66%[36]图6为中长波双色焦平面成像演示图像[37]

      Figure 6.  Photographs of two-color superlattice infrared detectors with operating temperature of 80 K and optical system F number of 4[37]

    • 随着制备能力和探测器性能的不断提高,超晶格红外焦平面开始了应用试验。2005年,德国IAF和AIM公司研制的中/中波超晶格双色焦平面探测器应用于欧洲大型运输机Airbus A400 M的多色红外预警系统(MIRAS)。

      2019年,美国国家航空航天局(NASA)报道了在国际空间站上采用QmagiQ公司研制的一款红外热像仪(CTI)航天试验情况。该热像仪使用了320×256超晶格中长双色波探测器,响应波段分别为3~5 μm和8~10 μm,于2018年随补给飞船成功发射到达空间站,并投入使用。图7为CTI获得的两个红外波段的成像图,其中可见光成像图来自谷歌地图,红外图像的每个像素地面分辨率为80 m[38]。超晶格探测器在长波段的量子效率大于30%,工作温度83 K。

      2020年,美国NASA戈达德航天中心、JPL等报道了采用超晶格1 K×1 K长波红外焦平面航空飞行试验[39]。采用100 mm光学口径,飞行高度为2000 ft(1 ft=30.48 cm)和4000 ft。在2000 ft高度,地面分辨率为0.8 ft。该飞行试验主要为后续超晶格焦平面航天应用进一步积累经验。由于超晶格热像仪的出色性能,NASA计划在后续任务中更多地使用超晶格红外探测器,包括Landsat10等[39]

      2021年,美国JPL报道了高温工作超晶格中波红外焦平面的研制情况,该焦平面计划用于美国“立方星”(Cubesat)的高光谱红外大气探测仪,进行探测大气温度和水汽的分布[40]。器件规格为640×512,具有高均匀性和高有效像元率,探测器的截止波长5.7 μm,最大量子效率达到50%,在115 K温度下,暗电流密度小于3×10−7 A/cm2,有效像元率达到99.9%。同时,他们也报道了640×512长波焦平面的情况,器件截止波长11.5 μm,最大量子效率达到40%。该器件也将应用于立方星平台,服务于美国NASA的地球科学技术空间验证项目。

      Figure 7.  The visible (from Google map) and CTI infrared images (captured by NASA's International Space Station) of an Africa region, the Band 1 is the mid-wave infrared image, and the Band 2 is the long-wave infrared image[38]

    • 碲镉汞是当前最成功的红外探测材料,其响应波段可以覆盖短波至甚长波的整个红外谱段,具有高的吸收系数和量子效率。由于碲镉汞非常低的肖特基-里德-霍尔(SRH)复合速率,少子寿命长,暗电流低,可以实现高性能红外探测器。碲镉汞的挑战主要来自于材料生长、芯片制备工艺等方面难度大及由此而带来的成品率和制备成本等问题。

      InAs/GaSb超晶格在谱段覆盖性方面和碲镉汞一样可以在短波至甚长波整个红外谱段内调节。与碲镉汞相比,超晶格红外探测器在量子效率和少子寿命还需要进一步的提升。但另一方面,InAs/GaSb超晶格属于III-V族化合物半导体,其物理化学性质较为稳定,超晶格焦平面在空间均匀性、时间稳定性等方面具有优势,同时,超晶格在材料、芯片的制备技术方面也具备更好的可控性。

      近年来,InAs/GaSb超晶格红外探测器取得了飞速的发展。在国外,超大规格、高像元密度、高温工作中波焦平面、高性能长波红外焦平面及双色焦平面等已先后获得突破,超晶格探测器也已初步获得航天应用。国内自“十二五”布局开展锑化物超晶格红外探测技术研究,相关研究单位先后在超晶格长波焦平面技术、双色焦平面技术等方面取得突破,初步形成了超晶格材料外延生长、芯片制备等技术能力和平台。后续,超晶格红外探测技术将在进一步提升材料基本性能(量子效率、少子寿命)的基础上,发展大规格和超大规格红外焦平面,高像元密度焦平面,甚长波和双色、多色探测器,高工作温度红外焦平面等。

    • 在少子寿命方面,在超晶格中,轻、重空穴带的分离抑制了俄歇复合过程,因此,理论上超晶格的少子寿命可以比碲镉汞更长。但目前InAs/GaSb超晶格的少子寿命一般小于100 ns[41],与碲镉汞相比有很大的差距,这主要是由于超晶格材料存在较强的SRH复合。InAs/InAsSb超晶格因表现出了更长的载流子寿命而颇受关注[42],但对于相同的探测波长,InAs/InAsSb超晶格的吸收系数较小;同时,InAs/InAsSb超晶格的空穴迁移率和扩散长度也较小。另一种新型超晶格材料——晶格匹配 InAs/GaAsSb 超晶格展现出了优良的光电性能[43],计算表明,对于相同的探测波长,InAs/GaAsSb 超晶格具有与InAs/GaSb超晶格相似的吸收系数。

      在量子效率方面,由于在超晶格中电子和空穴分别位于InAs和GaSb层中,吸收系数的大小与电子波函数和空穴波函数的交叠积分相关,从而导致器件的量子效率随波长增大而下降。目前中波红外超晶格探测器的量子效率可以实现70%~80%,长波器件的量子效率约30%~40%。提升长波、甚长波超晶格焦平面器件的量子效率是一个重要的研究课题。近年来,采用超表面微纳光子结构提升器件量子效率成为一个有效途径。与探测器集成的微纳光子结构主要包括一维、二维光子晶体、光栅、汇聚透镜、微腔结构等。近年来,美国麻省理工学院、空军实验室、JPL等在该方面开展研究并取得了较好的成果[44-45]

    • 在焦平面器件发展趋势方面,将充分利用超晶格自身技术优势,发展高像元密度大面阵探测器、甚长波探测器、双色和多色探测器、高工作温度探测器及新型雪崩探测器等。

      在高像元密度大面阵器件发展方面,国际上超晶格外延材料尺寸已经达到6 in (1 in=2.54 cm),正向更大晶圆发展;像元尺寸已缩小至5 μm,最大规格达到6 K×4 K。国内已具备4~6 in 超晶格外延材料生长和锑化物半导体探测器芯片制备能力,在小像元尺寸的台面芯片制备方面也具有技术基础。

      在甚长波红外探测器方面,关键在于降低器件暗电流,红外探测器的暗电流与少子寿命密切相关。因此,提升超晶格材料的少子寿命是一个重要的研究课题。晶格匹配InAs/GaAsSb新型超晶格材料有助于降低材料的深能级缺陷,从而提升少子寿命。降低器件暗电流的另一途径是运用InAs、GaSb、AlSb等材料间多样的能带排列方式,灵活设计出先进的抑制暗电流器件结构。最近,国外报道了14 μm超晶格甚长波焦平面探测器,采用先进势垒设计结构,大大地抑制了器件的暗电流。

      在实现高温工作超晶格红外探测器的研究方面,主要集中在设计和制备各种具有暗电流抑制功能的异质势垒结构器件。国外研究机构采用nBn等异质势垒结构,很好地将超晶格中波红外探测器的工作温度提升至150 K以上。在国外,高温工作的超晶格中波红外焦平面已经显示出了替代传统InSb器件的趋势。

      实现双色或多色探测是超晶格发展的一个重要发展方向。超晶格主要采用改变材料周期厚度来调节响应波长,采用分子束外延技术,只要改变InAs、GaSb单层的生长时间(改变层厚)就可以获得不同响应波长的超晶格材料,因此非常容易在一次外延生长过程中集成两个甚至多个响应不同波长的探测器材料结构。近期研究结果也表明,超晶格是实现双色或多色探测的优先技术。

      在新型探测器方面,锑化物超晶格雪崩探测器(APD)近年来也备受关注。美国伊利诺斯大学研究发现,InAs/GaSb超晶格的空穴/电子碰撞电离系数比可以近似为零,研制的电子雪崩型器件的增益为300时,过剩噪声因子小于1.2[46]。该团队与美国雷神公司合作研制的电子雪崩型超晶格APD,在增益为500时,过剩噪声因子仍旧保持在接近于1的水平,表现出了极低的雪崩噪声特性[47]

    • 文中简要介绍了锑化物超晶格红外探测技术的技术特点、发展历程及其发展趋势。自InAs/GaSb超晶格红外探测器的设想被提出后,30多年来,通过结构设计优化和制备技术提升,国内外研究结构先后获得了一系列的大面阵、高温工作、长波、多色红外探测器,超晶格红外焦平面也表现出了高均匀性、高稳定性、高制备可控性等优势,并且在红外遥感成像等航空航天领域得到应用。今后,超晶格红外焦平面将向着更高的像素密度、更大的规格、更高的工作温度、甚长波、双色(多色)、雪崩器件等方向发展。

Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return