Spacecraft adaptive vibration absorber based on electronic magnetic field
-
-
Abstract
The rotating parts on the spacecraft can seriously disturb working payload. In order to decrease this effect, electronic magnetic technology was applied to adaptive vibration absorber. This EM frequency control system worked through the repulsions from two electromagnets: when the central magnet left the balance place, repulsions of the electromagnets on both sides of the magnet would change. Because of the nonlinearity of the repulsions, the combining force would point to the balance just like a restoring force. Theoretical analysis showed that if the distance between the two electromagnets was sufficiently small, such restoring force was proportional to the displacement of central magnet from the balance place. Furthermore, it was also proportional to the currency in the electromagnet. These conclusions are supported by simulation too. That means it can be taken as the base of an effective, high-accurate DVA control method. According to the theoretical calculation and FEM simulation results, the whole system can change its stiffness in a range of 4 500 N/m. Through choosing right mass ratio, the adaptive vibration absorber could adjust its working frequency in a range of 50 Hz. The performance of the vibration absorber can meet the need of spacecraft.
-
-