Influence of rotor aerodynamic heating on infrared characteristics of the distribution of the helicopter
-
-
Abstract
Based on CFD/IR numerical calculations, the temperature distribution of rotor skin and the effect on the infrared radiation characteristics of helicopter were studied systematically. The results show that: (1) The temperature distribution on the rotor blades shows an increasing tendency from the rotor shaft to wingtip, the maximum temperature is 316 K, 29 K higher than the ambient temperature; The maximum temperature of radiation shield is 317 K, 30 K higher than the ambient temperature; (2) At the same detection angle, rotor infrared radiation intensity fluctuates along of time, the change of infrared radiation intensity with time in 3-5 m and 8-14 m bands is consistent; (3) The proportion of 3-5 m and 8-14 m band infrared radiation intensity increment of aerodynamic heating rotor in the same band infrared radiation intensity of overall solid are 15%-16%、5%-6%; (4) 8-14 m band infrared radiation intensity of aerodynamic heating rotor is about thirty times as much as that of 3-5 m band, the proportion of aerodynamic heating rotor 8-14 m band infrared radiation intensity in the same band Based on CFD/IR numerical calculations, the temperature distribution of rotor skin and the effect on the infrared radiation characteristics of helicopter were studied systematically. The results show that: (1) The temperature distribution on the rotor blades shows an increasing tendency from the rotor shaft to wingtip, the maximum temperature is 316 K, 29 K higher than the ambient temperature; The maximum temperature of radiation shield is 317 K, 30 K higher than the ambient temperature; (2) At the same detection angle, rotor infrared radiation intensity fluctuates along of time, the change of infrared radiation intensity with time in 3-5 m and 8-14 m bands is consistent; (3) The proportion of 3-5 m and 8-14 m band infrared radiation intensity increment of aerodynamic heating rotor in the same band infrared radiation intensity of overall solid are 15%-16%、5%-6%; (4) 8-14 m band infrared radiation intensity of aerodynamic heating rotor is about thirty times as much as that of 3-5 m band, the proportion of aerodynamic heating rotor 8-14 m band infrared radiation intensity in the same band infrared radiation intensity of overall solid is about 30%-40%, but reduction of rotor surface emissivity is the effective method to reduce the 8-14 m band infrared radiation intensity and the proportion in the same band infrared radiation intensity of overall solid.
-
-