Miss distance analysis of the extended trajectory shaping guided systems
-
-
Abstract
The extended trajectory shaping guidance law was deduced based on the time-to-go weighted cost function. For the extended trajectory shaping guidance systems with one single lag seeker and autopilot dynamics, the non-dimensional position and angle adjoint models were derived using the non-dimensional technique and adjoint method when the seeker angular and angle zero position errors, angular noise and target glint noise was introduced into the guidance system. The simulation results show that in order to reduce the miss distance introduced by seeker angular zero position error, a large exponent n and long guidance time is necessary and when the missile terminal guidance time is about 15 times of the system total lag time, the position miss distance introduced by seeker angle zero position error approaches to zero while the angle miss distance approaches to an opposite value of the angle zero position error. With the increasing of the terminal guidance time, the position and angle miss of the seeker angular noise and target glint noise approaches to a nonzero stable value and the miss distance is increasing when the exponential number n increases. Finally, it will be seen that the miss distance introduced by angular noise is further increased with a slow guidance dynamics and with the increasing of the filter bandwidth, the miss distance introduced by glint noise is also increased.
-
-