[1] Gaeta C J, Rieger H, Turcu I C E, et al. High-power collimated laser-plasma source for proximity X-Ray nanolithography[J]. Journal of Vacuum Science and Technology B, 2003, 21(1): 280-287.
[2] Izumi N, Snavely R, Gregori G, et al. Remington application of imaging plates to X-ray imaging and spectroscopy in laser plasma experiments[J]. Review of Scientific Instruments, 2006, 77(10): 325-1-325-5.
[3] Rocca J J, Shlyaptsev V, Tomasel F G, et al. Demonstration of a discharge pumped table-top soft-X-ray laser[J]. Physical Review Letters, 1994, 73(6): 2192-2195.
[4] Ben-Kish A, Shuker M, Nemirovsky R A, et al. Plasma dynamics in capillary discharge soft X-ray lasers[J]. Physical Review Letters, 2001, 87(1): 015002.
[5] Niimi G, Hayashi Y, Nakajima M, Watanabe M, et al. Observation of multi-pulse soft X-ray lasing in a fast capillary discharge[J]. Journal of Physics D: Applied Physics, 2001, 34(14): 2123~2126.
[6] Tan C A, Kwek K H. Development of a low current discharge-driven soft X-ray laser[J]. Journal of Physics D: Applied Physics, 2007, 40(16): 4787-4792.
[7] Zhao Y P, Chen Y L, Wu Y C, et al. Effects of capillary discharge current on the time of lasing onset of soft X-ray laser at low pressure[J]. Journal of Physics D: Applied Physics, 2006, 39(2): 342-346.
[8] Zhao Y P, Jiang S, Xie Y, et al. Demonstration of soft X-ray laser of Ne-like Ar at 69.8 nm pumped by capillary discharge[J]. Optics Letters, 2011, 36(17): 3458-3460.
[9] Qu Yancheng, Ren Deming, Zhao Weijiang, et al. Experimental research on miniature folded cavity TEA CO2 Laser[J]. Infrared and Laser Engineering, 2007, 36(5): 632-634, 655. (in Chinese)
[10] Shao Mingzhen, Shao Chunlei. Design of structure and optimization of flow field for mainframe of high power TEA CO2 Laser[J]. Infrared and Laser Engineering, 2012, 41(6):1508-1513. (in Chinese)