留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能激光大气传输性能评估技术

朱文越 钱仙妹 饶瑞中 王辉华

朱文越, 钱仙妹, 饶瑞中, 王辉华. 高能激光大气传输性能评估技术[J]. 红外与激光工程, 2019, 48(12): 1203002-1203002(12). doi: 10.3788/IRLA201948.1203002
引用本文: 朱文越, 钱仙妹, 饶瑞中, 王辉华. 高能激光大气传输性能评估技术[J]. 红外与激光工程, 2019, 48(12): 1203002-1203002(12). doi: 10.3788/IRLA201948.1203002
Zhu Wenyue, Qian Xianmei, Rao Ruizhong, Wang Huihua. Evaluation technology of high energy laser atmospheric propagation performance[J]. Infrared and Laser Engineering, 2019, 48(12): 1203002-1203002(12). doi: 10.3788/IRLA201948.1203002
Citation: Zhu Wenyue, Qian Xianmei, Rao Ruizhong, Wang Huihua. Evaluation technology of high energy laser atmospheric propagation performance[J]. Infrared and Laser Engineering, 2019, 48(12): 1203002-1203002(12). doi: 10.3788/IRLA201948.1203002

高能激光大气传输性能评估技术

doi: 10.3788/IRLA201948.1203002
基金项目: 

国防科技创新特区项目

详细信息
    作者简介:

    朱文越(1976-),男,研究员,主要从事激光大气传输方面的研究。Email:zhuwenyue@aiofm.ac.cn

  • 中图分类号: O439

Evaluation technology of high energy laser atmospheric propagation performance

  • 摘要: 激光在实际大气中的传输效果不仅与其自身传输机理有关,还与大气因素密切相关,因此,准确评估激光大气传输的效果,不仅需要开展激光传输机理的研究,建立激光大气传输数理模型,还需要对实际传输过程中的大气光学特性进行测量、分析和预测。鉴于实际大气环境的复杂性及多因素耦合的制约,激光大气传输的机理研究大都采用大气参数可控的物理实验平台和数值仿真软件平台进行研究,而大气光学特性的研究则在大量实地测量分析的基础上,重点发展基于物理相关性分析和数学模型构建的光学湍流模式化表征研究。简要介绍了国内外高能激光大气传输性能评估技术的发展情况,面向高能激光系统未来的实际应用,指出了其发展趋势。
  • [1] Tatarski V I. Wave Propagation in a Turbulent Medium[M]. Translated by Wen Jingsong, Song Zhengfang, Zeng Zongping, et al. Beijing:Science Press, 1978. (in Chinese)塔塔尔斯基. 湍流大气中波的传播理论[M]. 温景嵩, 宋正方, 曾宗泳,等, 译. 北京:科学出版社, 1978.
    [2] Ishimaru A. Wave Propagation and Scattering in Random Media[M]. Translated by Huang Runheng, Zhou Shijian. Beijing:Scicence Press, 1986. (in Chinese)石丸. 随机介质中波的传播和散射[M]. 黄润恒, 周诗健, 译. 北京:科学出版社, 1986.
    [3] Strohbehn J W. Laser Beam Propagation in the Atmosphere[M]. Berlin:Springer-Verlag, 1978.
    [4] Bradley L C, Herrmann J. Phase compensation for thermal blooming[J]. Appl Opt, 1974. 13(2):331-334.
    [5] Fleck J A, Morris J R, Feit M D. Time-dependent propagation of high energy laser beams through the atmosphere[J]. Appl Phys, 1976, 10:129-160.
    [6] Fleck J A, Morris J R, Feit M D. Time-dependent propagation of high-energy laser beams through the atmosphere II[J]. Appl Phys, 1977, 14:99-1157.
    [7] Johnson B. Thermal-blooming laboratory experiments[J]. The Lincoln Laboratory Journal, 1992, 5(1):151-170.
    [8] Schonfeld J F. The theory of compensated laser propagation through strong thermal blooming[J]. The Lincoln Laboratory Journal, 1992, 5(1):131-150.
    [9] Mehta N C. GRAND:a 4-D wave optics code for atmospheric laser propagation[C]//Proc of SPIE, 1991, 1487:10.1117/12.46553.
    [10] Steve Coy. WaveTrain:A user-friendly wave optics propagation code[EB/OL].[2019-10-31]. https://www.mza.com/publications/wtspiepaper.htm.
    [11] Coy S, Panthaki M. Multidisciplinary model based engineering for laser weapon systems:recent progress[C]//Proc of SPIE, 2013, 8840:10.1117/12.2030195.
    [12] Fiorino S T, Bartell R J, Perram G P, et al. The HELEEOS atmospheric effects package:a probabilistic method for evaluating uncertainty in low-altitude high energy laser effectiveness[J]. Journal of Directed Energy, 2006, 1(4):347.
    [13] Fiorino S T, Bartell R J, Krizo M J, et al. Worldwide mission planning tool for tactical laser systems[J]. Journal of Aerospace Computing Information and Communication, 2009, 6(8):491-505.
    [14] Burley J L, Fiorino S T, Randall R M, et al. High-energy laser tactical decision aid (HELTDA) for mission planning and predictive avoidance[C]//Proc of SPIE, 2012, 8381:10.1117/12.919046.
    [15] Steve Doss-Hammel, Tsintikidis D, Merritt D, et al. Atmospheric characterization for high energy laser beam propagation in the maritime environment[C]//Proc of SPIE, 2004, 5552:10.1117/12.562302.
    [16] Fussman C R. High energy laser propagation in various atmospheric conditions utilizing a new accelerated scaling code[D]. Monterey:Naval Postgraduate School, 2014.
    [17] Collins J C. An improved thermal blooming model for the laser performance code ANCHOR[D]. Monterey:Naval Postgraduate School, 2016.
    [18] Needham D, Eckstrand E. Analyzing a high energy laser modeling and simulation framework[C]//Proceeding of the International Conference on Software Engineering Research and Practice, 2004:580-586.
    [19] Huang Yinbo. Study on HEL propagation and its phase compensation in the dense atmosphere near the ground[D]. Hefei:Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2005. (in Chinese)黄印博. 高能激光近地面稠密大气传输及其相位校正的若干分析[D]. 合肥:中国科学院安徽光学精密机械研究所, 2005.
    [20] Zhu Wenyue, Huang Yinbo, Qian Xianmei, et al. Code for laser atmospheric propagation and its applications[J]. Journal of Atmospheric and Environmental Optics, 2007, 6(2):451-458. (in Chinese)朱文越, 黄印博, 钱仙妹, 等.激光大气传输模拟程序CLAP及其应用[J].大气与环境光学学报, 2007, 6(2):451-458.
    [21] Xie Xiaogang, Zhang Jianzhu, Yue Yufang, et al. EasyLaser:Component-based laser system simulation software[J]. High Power Laser and Particle Beams, 2013, 25(10):2536-2540. (in Chinese)谢晓刚,张建柱,岳玉芳, 等. 激光系统组件化仿真软件EasyLaser[J]. 强激光与粒子束, 2013, 25(10):2536-2540.
    [22] SeeLight光学系统虚拟仿真实验平台介绍[EB/OL].[2019-10-31]. https://mp.weixin.qq.com/s/YsEA2dxoPvKA8HIjWHkWSw.
    [23] Sun Quan, Lv Pin, Ning Yu, et al. Application of optical system simulation software SeeLight in adaptive optics[J]. Opto-Electronic Engineering, 2018, 45(3):180077. (in Chinese)孙全, 吕品, 宁禹, 等. 光学系统仿真软件SeeLight在自适应光学上的应用[J]. 光电工程, 2018, 45(3):180077.
    [24] Frederickson P A, Davidson K L, Zeisse C R, et al. Estimating the refractive index structure parameter (Cn2) over the ocean using bulk methods[J]. J Appl Meteorology,2000, 39:1770-1783.
    [25] Smith R W, Ricklin J C, Cranston K E, et al. Comparison of a model describing propagation through optical turbulence (PROTURB) with field data[C]//Proc of SPIE, 1994, 2222:10.1117/12.177955.
    [26] Eun Oh, Ricklin J C, Gilbreath G C, et al. Optical turbulence model for laser propagation and imaging applications[C]//Proc of SPIE, 2004, 5160:10.1117/12.504556.
    [27] Oh Y H, Ricklin J C, Oh E, et al. Estimating optical turbulence effects on free-space laser communication:Modeling and measurements at ARL's A_LOT facility[C]//Proc of SPIE, 2004, 5550:10.1117/12.562362.
    [28] Fiorino S T, Bartell R J, Krizo M J, et al. A first principles atmospheric propagation characterization tool-the laser environmental effects definition and reference (LEEDR)[C]//Proc of SPIE, 2008, 6878:10.1117/12.763812.
    [29] Fiorino S T, Randall R M. Validation of a UV-to-RF high spectral resolution atmospheric boundary layer characterization tool[J]. Journal of Applied Meteorology and Climatology, 2014, 53:10.1175/JAMC-D-13-036.1.
    [30] COAMPS Model[EB/OL].[2019-10-31]. https://www.cencoos.org/data/models/coamps.
    [31] Peng Nina, Zhou Jianmin, Luo Jun, et al. Optical characteristic database of atmosphere and typical object[J]. Journal of Atmospheric and Environmental Optics, 2006, 1(2):92-96. (in Chinese)彭妮娜, 周建民, 罗军, 等. 大气及典型地物光学特性数据库[J]. 大气与环境光学学报, 2006, 1(2):92-96.
    [32] Yi Weining, Peng Nina, Du Lili, et al. Introduction to the optical characteristic database of atmosphere and object[J]. Journal of Atmospheric and Environmental Optics, 2007, 2(6):440-445. (in Chinese)易维宁, 彭妮娜, 杜丽丽, 等.大气与地物光学特性数据库介绍[J]. 大气与环境光学学报, 2007, 2(6):440-445.
    [33] Cheng Min. Design and implementation of the atmospheric optical parameter database based on B/S and C/S architecture[D]. Beijing:University of Chinese Academy of Sciences, 2014. (in Chinese)程敏. 基于B/S和C/S架构的大气光学参数数据库设计与实现[D]. 北京:中国科学院大学, 2014.
    [34] Wu Pengfei. The database of atmospheric optical characteristics[R]. Hefei:Laboratory of Atmospheric Optics, the Chinese Academy of Sciences, 2012. (in Chinese)武鹏飞. 大气光学特性参数数据库[R]. 合肥:中国科学院大气光学重点实验室, 2012.
    [35] Wang Hongshuai, Yao Yongqiang, Liu Liyong. A review of atmospheric optical turbulence modeling research[J]. Progress in Astronomy, 2012, 30(3):362-377. (in Chinese)王红帅, 姚永强, 刘立勇. 大气光学湍流模型研究进展[J]. 天文学进展. 2012, 30(3):362-377.
    [36] Sun Gang, Weng Ningquan, Xiao Liming, et al. Vertical distribution characteristics and models of atmospheric turbulence in representative area[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(6):425-435. (in Chinese)孙刚, 翁宁泉, 肖黎明, 等. 典型地区大气湍流高度分布特性与模式研究[J]. 大气与环境光学学报, 2018, 13(6):425-435.
    [37] Zhang Feizhou, Li Youkuan. The scaling laws for thermal blooming of the high-energy laser propagation[C]//Proc of SPIE, 2005, 5832:10.1117/12.619503.
    [38] Van Zandt N R, Fiorino S T, Keefer K J. Enhanced fast-running scaling law model of thermal blooming and turbulence effects on high energy laser propagation[J]. Optics Express, 2013, 21(12):10.1364/OE.21.014789.
    [39] Huang Yinbo, Wang Yingjian. Numerical analysis of the scaling laws about focused beam spreading induced by the atmosphere[J]. Acta Physica Sinica, 2006(12):6715-6719. (in Chinese)黄印博, 王英俭. 聚焦光束大气传输光束扩展定标规律的数值分析[J]. 物理学报, 2006, 55(12):6715-6719.
    [40] Rao Ruizhong. Combined effect of turbulence and thermal blooming of laser propagation in atmosphere[J]. Infrared and Laser Engineering, 2006, 35(2):130-134. (in Chinese)饶瑞中. 激光大气传输湍流与热晕综合效应[J]. 红外与激光工程, 2006, 35(2):130-134.
    [41] Qiao Chunhong, Fan Chengyu, Huang Yinbo, et al. Scaling laws of high energy laser propagation through atmosphere[J]. Chinese Journal of Lasers, 2010, 37(2):433-437. (in Chinese)乔春红, 范承玉, 黄印博, 等. 高能激光大气传输的定标规律[J]. 中国激光, 2010, 37(2):433-437.
    [42] Zhang Pengfei, Fan Chengyu, Qiao Chunhong, et al. Analysis of scaling laws for phase compensation of focused beam under thermal blooming conditions[J]. Chinese Journal of Lasers, 2012, 39(2):0213002. (in Chinese)张鹏飞, 范承玉, 乔春红, 等.聚焦光束热晕效应相位补偿定标规律研究[J]. 中国激光, 2012, 39(2):0213002.
    [43] Zhang Pengfei, Qiao Chunhong, Feng Xiaoxing, et al. Scaling laws of thermal blooming effect of repetitively long pulse laser[J]. Acta Optica Sinica, 2017, 37(10):1001001. (in Chinese)张鹏飞, 乔春红, 冯晓星, 等. 序列长脉冲激光热晕效应的定标规律[J]. 光学学报, 2017, 37(10):1001001.
    [44] Robert Tyson. Principles of Adaptive Optics[M]. 3rd ed. Boca Raton:CRC Press, 2011.
    [45] Fiorino S T, Bartell R J, Perram G P, et al. Worldwide estimates and uncertainty assessments of laser propagation for diverse geometries for paths in the altitude regime of 3 km and below at wavelengths 0.355 to 10.6m[C]//Proc of SPIE, 2007, 6551:10.1117/12.718404.
  • [1] 沈玲君, 宋英雄.  地星大气湍流路径三层传输模型数值模拟 . 红外与激光工程, 2023, 52(11): 20230125-1-20230125-13. doi: 10.3788/IRLA20230125
    [2] 朱嘉康, 安其昌, 杨飞.  大口径望远镜镜面视宁度检测方法综述 . 红外与激光工程, 2023, 52(2): 20220488-1-20220488-18. doi: 10.3788/IRLA20220488
    [3] 于策, 王天枢, 张莹, 林鹏, 郑崇辉, 马万卓.  大气湍流信道中OAM光束与高斯光束传输性能的实验研究 . 红外与激光工程, 2021, 50(8): 20200400-1-20200400-10. doi: 10.3788/IRLA20200400
    [4] 徐晨露, 郝士琦, 张岱, 赵青松, 宛雄丰.  综合斜程传输和光束扩展影响下的大气湍流相位屏组设计 . 红外与激光工程, 2019, 48(4): 404003-0404003(8). doi: 10.3788/IRLA201948.0404003
    [5] 刘中辉, 陈纯毅, 姚海峰, 潘石, 向磊, 娄岩, 倪小龙.  基于大气湍流传输激光散斑的真随机数提取研究 . 红外与激光工程, 2019, 48(12): 1205005-1205005(8). doi: 10.3788/IRLA201948.1205005
    [6] 刘潇明, 赵长明, 张子龙.  高超声速目标相干双频激光雷达探测技术 . 红外与激光工程, 2019, 48(11): 1105005-1105005(7). doi: 10.3788/IRLA201948.1105005
    [7] 王姣, 柯熙政.  部分相干光束在大气湍流中传输的散斑特性 . 红外与激光工程, 2017, 46(7): 722003-0722003(8). doi: 10.3788/IRLA201746.0722003
    [8] 李一芒, 高世杰, 盛磊.  近海激光通信分集技术对大气湍流扰动抑制的实验 . 红外与激光工程, 2016, 45(3): 322001-0322001(7). doi: 10.3788/IRLA201645.0322001
    [9] 周颖捷, 周安然, 孙东松, 强希文, 封双连.  差分像移大气湍流廓线激光雷达的研制 . 红外与激光工程, 2016, 45(11): 1130001-1130001(5). doi: 10.3788/IRLA201645.1130001
    [10] 陈牧, 柯熙政.  大气湍流对激光通信系统性能的影响研究 . 红外与激光工程, 2016, 45(8): 822009-0822009(7). doi: 10.3788/IRLA201645.0822009
    [11] 李玉杰, 朱文越, 饶瑞中.  非Kolmogorov大气湍流随机相位屏模拟 . 红外与激光工程, 2016, 45(12): 1211001-1211001(8). doi: 10.3788/IRLA201645.1211001
    [12] 施展, 樊祥, 程正东, 朱斌, 陈熠.  关联成像的点扩散函数分析法 . 红外与激光工程, 2016, 45(11): 1124001-1124001(6). doi: 10.3788/IRLA201645.1124001
    [13] 胡小川, 贺也洹, 吴双, 张彬.  内通道轴向风速对强激光相位特性的影响 . 红外与激光工程, 2016, 45(8): 806003-0806003(6). doi: 10.3788/IRLA201645.0806003
    [14] 艾勇, 段梦云, 徐洁洁, 单欣, 陈晶, 熊准, 姜茹.  LC-SLM激光大气传输湍流模拟及通信实验分析 . 红外与激光工程, 2015, 44(10): 3103-3109.
    [15] 宗飞, 张志刚, 王柯, 霍文, 胡月宏, 常金勇, 强希文.  新疆戈壁地区近湖面大气湍流强度测量与分析 . 红外与激光工程, 2015, 44(S1): 104-108.
    [16] 廖天河, 刘伟, 高穹.  不同形状激光波束在大气中传输的湍流效应 . 红外与激光工程, 2015, 44(S1): 41-45.
    [17] 孙刚, 翁宁泉, 张彩云, 高慧, 吴毅.  基于NOAA模式的典型地区大气湍流高度分布 . 红外与激光工程, 2014, 43(2): 388-393.
    [18] 葛琪, 王可东, 张弘, 李桂斌, 邸超.  长曝光大气湍流退化图像点扩散函数估计 . 红外与激光工程, 2014, 43(4): 1327-1331.
    [19] 张士杰, 李俊山, 杨亚威, 陆敬辉, 李孟.  脉动流场光学传输效应仿真 . 红外与激光工程, 2014, 43(8): 2576-2581.
    [20] 史可天, 马汉东.  基于涡球模型的湍流气动光学效应预测方法 . 红外与激光工程, 2012, 41(6): 1401-1404.
  • 加载中
计量
  • 文章访问数:  900
  • HTML全文浏览量:  161
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-20
  • 修回日期:  2019-11-30
  • 刊出日期:  2019-12-25

高能激光大气传输性能评估技术

doi: 10.3788/IRLA201948.1203002
    作者简介:

    朱文越(1976-),男,研究员,主要从事激光大气传输方面的研究。Email:zhuwenyue@aiofm.ac.cn

基金项目:

国防科技创新特区项目

  • 中图分类号: O439

摘要: 激光在实际大气中的传输效果不仅与其自身传输机理有关,还与大气因素密切相关,因此,准确评估激光大气传输的效果,不仅需要开展激光传输机理的研究,建立激光大气传输数理模型,还需要对实际传输过程中的大气光学特性进行测量、分析和预测。鉴于实际大气环境的复杂性及多因素耦合的制约,激光大气传输的机理研究大都采用大气参数可控的物理实验平台和数值仿真软件平台进行研究,而大气光学特性的研究则在大量实地测量分析的基础上,重点发展基于物理相关性分析和数学模型构建的光学湍流模式化表征研究。简要介绍了国内外高能激光大气传输性能评估技术的发展情况,面向高能激光系统未来的实际应用,指出了其发展趋势。

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回