留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形孔径折叠成像系统的光-数联合无热化设计(封面文章·特邀)

马德超 朴明旭 谢亚峰 赵渊明 牛群 张承然 王喆 张博

马德超, 朴明旭, 谢亚峰, 赵渊明, 牛群, 张承然, 王喆, 张博. 环形孔径折叠成像系统的光-数联合无热化设计(封面文章·特邀)[J]. 红外与激光工程, 2024, 53(3): 20240013. doi: 10.3788/IRLA20240013
引用本文: 马德超, 朴明旭, 谢亚峰, 赵渊明, 牛群, 张承然, 王喆, 张博. 环形孔径折叠成像系统的光-数联合无热化设计(封面文章·特邀)[J]. 红外与激光工程, 2024, 53(3): 20240013. doi: 10.3788/IRLA20240013
Ma Dechao, Piao Mingxu, Xie Yafeng, Zhao Yuanming, Niu Qun, Zhang Chengran, Wang Zhe, Zhang Bo. Athermalization design for annular aperture folding imaging system based on light-digital combination (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(3): 20240013. doi: 10.3788/IRLA20240013
Citation: Ma Dechao, Piao Mingxu, Xie Yafeng, Zhao Yuanming, Niu Qun, Zhang Chengran, Wang Zhe, Zhang Bo. Athermalization design for annular aperture folding imaging system based on light-digital combination (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(3): 20240013. doi: 10.3788/IRLA20240013

环形孔径折叠成像系统的光-数联合无热化设计(封面文章·特邀)

doi: 10.3788/IRLA20240013
基金项目: 国家自然科学基金项目(62105041)
详细信息
    作者简介:

    马德超,男,硕士生,主要从事计算成像方面的研究

  • 中图分类号: O435

Athermalization design for annular aperture folding imaging system based on light-digital combination (cover paper·invited)

Funds: National Natural Science Foundation of China (62105041)
  • 摘要: 环形孔径折叠成像系统通过光路折叠可以实现光学系统的小型化。然而环形孔径折叠成像系统由于仅使用一块基底材料,且没有补偿镜,无法通过光学被动无热化实现宽温度范围的高质量成像。为了减小温度对成像质量影响的同时简化光学系统结构,引入波前编码的方法来设计光-数联合的环形孔径折叠成像系统。文中研究了光-数联合的环形孔径折叠成像系统设计原理,推导了遮拦比与相位掩膜板参数的关系,以实现离焦一致性。在图像解码部分,文中研究了不同权重下的点扩散函数(PSF)的图像复原效果,通过模拟退火算法构建了合成PSF模型。根据理论分析设计了光-数联合的环形孔径折叠成像系统,焦距为70 mm,系统总长为25 mm,F数为1,全视场8°。在−40~60 ℃范围内,高温和低温下的峰值信噪比(PSNR)比其他方法分别提高了4.709 0 dB和5.044 2 dB,实现了单一滤波器的图像复原。文中研究在简化红外成像光学系统的同时,采用光-数联合的方法克服了环形孔径折叠成像系统的温度限制,为宽温度范围红外系统小型化提供了新的思路。
  • 图  1  环形孔径折叠成像系统原理示意图。(a)传统折射系统;(b)环形孔径折叠成像系统

    Figure  1.  Schematic diagram of annular aperture folded imaging system principle. (a) Traditional refractive system; (b) Annular aperture folded imaging system

    图  2  合成PSF优化流程图

    Figure  2.  Optimization process of the synthetic PSF

    图  3  环形孔径折叠成像系统图。(a)光学布局图;(b)实体模型前视图;(c)实体模型后视图

    Figure  3.  Schematic of the annular aperture folded imaging system. (a) Optical layout; (b) Front view of the solid model; (c) Rear view of the solid model

    图  4  不同温度下环形孔径折叠成像系统MTF

    Figure  4.  MTF of the annular aperture folded imaging system at different temperatures

    图  5  光-数联合的环形孔径折叠成像系统相位掩膜板参数与PSF一致性的相关性曲线

    Figure  5.  PSF consistency of light-digital combined annular aperture folding imaging system phase plate parameter

    图  6  环带型三次相位掩膜板示意图

    Figure  6.  Schematic of the annular cubic phase plate

    图  7  不同温度下的光-数联合环形孔径折叠成像系统MTF

    Figure  7.  MTF of the light-digital combined annular aperture folding imaging system at different temperatures

    图  8  不同温度下PSF

    Figure  8.  PSF at different temperatures

    图  9  图像复原的结果。(a)不同温度下的原始图像;(b)使用设计温度下的PSF进行图像复原;(c)使用合成PSF进行图像复原

    Figure  9.  Results of the image restoration. (a) Original images at different temperatures; (b) Image restoration using the PSF at the design temperature; (c) Image restoration using the synthesized PSF

    表  1  长波红外环形孔径折叠成像系统设计指标

    Table  1.   Design specifications for long-wave infrared annular aperture folded imaging system

    Parameter Value
    Wavelength/μm 8-12
    F-number 1
    Effective focal length/mm 70
    Field of view (2ω)/(°) 8
    下载: 导出CSV

    表  2  使用不同PSF图像复原的PSNR结果

    Table  2.   PSNR values of image restoration using different PSF

    Parameter Temperature/℃
    −40 20 60
    PSNR (PSF at the design temperature)/dB 19.417 3 28.043 2 19.751 9
    PSNR(synthesized PSF)/dB 24.461 5 24.470 9 24.460 9
    下载: 导出CSV
  • [1] Zhang Chengran, Piao Mingxu, Xie Yafeng, et al. Optical design of a monolithic compressed folding imaging lens for infrared/laser dual-band [J]. Opt Express, 2023, 31: 25691-25706.
    [2] Eric J, Tremblay, Ronald A, et al. Ultrathin cameras using annular folded optics [J]. Appl Opt, 2007, 46: 463-471.
    [3] Zhang Bo, Piao Mingxu, Cui Qingfeng. Achromatic annular folded lens with reflective-diffractive optics [J]. Opt Express, 2019, 27: 32337-32348.
    [4] 王琦, 朴明旭, 孟禹彤等. 红外双波段共光路环形孔径超薄成像系统设计[J]. 红外与激光工程, 2021, 50(03): 190-198.

    Wang Qi, Piao Mingxu, Meng Yutong, et al. Design of infrared dual-band common path annular aperture ultrathin imaging system[J]. Infrared and Laser Engineering , 2021, 50(3): 20200270. (in Chinese)
    [5] 谢亚峰, 朴明旭, 唐金力等. 激光/红外双模环形孔径导引头光学系统设计[J]. 红外与激光工程, 2023, 52(02): 400-407.

    Xie Yafeng, Piao Mingxu, Tang Jinli, et al. Optical system design of laser/infrared dual-mode annular aperture seeker[J]. Infrared and Laser Engineering , 2023, 52(2): 20220442. (in Chinese)
    [6] 孟禹彤, 朴明旭, 王琦. 折衍射混合环形孔径超薄成像光学系统设计[J]. 光子学报, 2019, 48(12): 152-161.

    Meng Yutong, Piao Mingxu, Wang Qi. Design of refractive diffraction hybrid annular aperture ultrathin imaging optical system[J]. Acta Photonica Sinica , 2019, 48(12): 1211003. (in Chinese)
    [7] Piao Mingxu, Zhang Bo, Dong Keyan. Design of achromatic annular folded lens with multilayer diffractive optics for the visible and near-IR waveareas [J]. Opt Express, 2020, 28: 29076-29085.
    [8] Zhang Hengshuo, Shi Zelin, Xu Baoshu, et al. Calculating model for equivalent thermal defocus amount in infrared imaging system[J]. Infrared Physics & Technology , 2016, 74: 72-80.
    [9] Edward R,Dowski W, Thomas Cathey. Extended depth of field through wave-front coding [J]. Appl Opt, 1995, 34: 1859-1866.
    [10] Wang Jianing, Piao Mingxu, Zhao Yuanming, et al. Optical design of athermalized infrared dual-band annular folded lens with multilayer imaging diffractive optical elements [J]. Optics and Lasers in Engineering , 2023, 161: 107370.
    [11] Eric J, Joel Rutkowski, Inga Tamayo, et al. Relaxing the alignment and fabrication tolerances of thin annular folded imaging systems using wavefront coding [J]. Appl Opt, 2007, 46: 6751-6758.
    [12] 周军, 陈守谦, 甄政等. 基于波前编码的大焦深弹载双色红外探测系统[J]. 红外与激光工程, 2020, 49(04): 83-87.

    Zhou Jun, Chen Shouqian, Zhen Zheng, et al. Double bands missile-borne infrared detection system of extended focus depth based on wavefront coding[J]. Infrared and Laser Engineering , 2020, 49(4): 0404001. (in Chinese)
    [13] Guillem Carles, Carme Ferran, Artur Carnicer, et al. Design and implementation of a scene-dependent dynamically selfadaptable wavefront coding imaging system [J]. Computer Physic Communications, 2012, 183(1): 147-154.
    [14] 史泽林, 冯斌, 冯萍. 基于波前编码的无热化红外成像技术综述(特邀) [J]. 红外与激光工程, 2022, 51(1): 20210454-42.

    Shi Zelin, Feng Bin, Feng Ping. Review on athermalized infrared imaging technology based on wavefront coding (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20210454. (in Chinese)
    [15] Zhao Hui, Xia Jingjing, Zhang Ling, et al. Improved vector-extrapolation-based Richardson–Lucy algorithm used for wavefront coded imaging [J]. Appl Opt, 2019, 58: 3630-3638.
    [16] Li Yidan, Wang Junhua, Zhang Xintong, et al. Extended depth-of-field infrared imaging with deeply learned wavefront coding [J]. Opt Express , 2022, 30: 40018-40031.
  • [1] 熊玉朋, 路文文, 黄铖, 陈付磊, 陈善勇.  可见光/近红外成像系统共轴折叠反射镜干涉检测技术(特邀) . 红外与激光工程, 2023, 52(6): 20230175-1-20230175-9. doi: 10.3788/IRLA20230175
    [2] 唐晗, 郑万祥, 曾兴容, 杨丹, 周春芬, 曹凌, 徐曼, 李洪兵, 杨开宇.  紧凑低成本非制冷长波红外连续变焦光学设计 . 红外与激光工程, 2023, 52(4): 20220607-1-20220607-11. doi: 10.3788/IRLA20220607
    [3] 杜伟峰, 王燕清, 郑循江, 吴永康, 谢廷安.  甚高精度微型星敏感器光学系统设计与验证 . 红外与激光工程, 2023, 52(11): 20230104-1-20230104-10. doi: 10.3788/IRLA20230104
    [4] 史泽林, 冯斌, 冯萍.  基于波前编码的无热化红外成像技术综述(特邀) . 红外与激光工程, 2022, 51(1): 20210454-1-20210454-11. doi: 10.3788/IRLA20210454
    [5] 王琦, 朴明旭, 孟禹彤, 高旭东.  红外双波段共光路环形孔径超薄成像系统设计 . 红外与激光工程, 2021, 50(3): 20200270-1-20200270-9. doi: 10.3788/IRLA20200270
    [6] 曲锐, 郭惠楠, 曹剑中, 杨建峰.  可见-近红外无热化连续变焦光学系统设计 . 红外与激光工程, 2021, 50(9): 20210090-1-20210090-7. doi: 10.3788/IRLA20210090
    [7] 伍雁雄, 乔健, 王丽萍.  长焦距无热化星敏感器光学系统设计 . 红外与激光工程, 2020, 49(9): 20200061-1-20200061-10. doi: 10.3788/IRLA20200061
    [8] 孟祥月, 王洋, 张磊, 付跃刚, 顾志远.  大相对孔径宽光谱星敏感器光学镜头设计 . 红外与激光工程, 2019, 48(7): 718005-0718005(8). doi: 10.3788/IRLA201948.0718005
    [9] 李生好.  红外目标模拟器动态校准系统光学系统设计 . 红外与激光工程, 2018, 47(9): 918007-0918007(7). doi: 10.3788/IRLA201847.0918007
    [10] 王静, 吴越豪, 戴世勋, 徐铁峰, 木锐.  硫系玻璃在长波红外无热化连续变焦广角镜头设计中的应用 . 红外与激光工程, 2018, 47(3): 321001-0321001(7). doi: 10.3788/IRLA201847.0321001
    [11] 李鹏, 种文艳, 马永军.  加工中心工件在机三维检测系统的光平面标定 . 红外与激光工程, 2017, 46(3): 317002-0317002(7). doi: 10.3788/IRLA201746.0317002
    [12] 陈俊宇, 李彬, 陈立娟, 桑吉章.  联合多个两行根数进行轨道预报 . 红外与激光工程, 2016, 45(S2): 30-34. doi: 10.3788/IRLA201645.S229001
    [13] 付强, 张新.  基于硫系玻璃的中波红外光学系统无热化设计 . 红外与激光工程, 2015, 44(5): 1467-1471.
    [14] 白瑜, 廖志远, 李华, 程习敏, 邢廷文, 蒋亚东.  折反射中波红外探测无热化成像系统设计分析 . 红外与激光工程, 2015, 44(2): 407-412.
    [15] 米士隆, 牟达, 牟蒙.  紧凑型长波红外光学系统无热化设计 . 红外与激光工程, 2015, 44(10): 3032-3036.
    [16] 邹刚毅, 樊学武, 庞志海, 凤良杰, 任国瑞.  矢量波像差理论在无遮拦三反光学系统设计中的应用 . 红外与激光工程, 2014, 43(2): 569-573.
    [17] 虞林瑶, 魏群, 张天翼, 姜湖海, 贾宏光.  无热化旋转双光楔共形光学系统设计 . 红外与激光工程, 2014, 43(2): 528-534.
    [18] 庞志海, 樊学武, 邹刚毅, 赵惠.  新型大视场无遮拦三反光学系统设计 . 红外与激光工程, 2013, 42(9): 2449-2452.
    [19] 于洋, 蹇毅, 潘兆鑫, 金亚平, 汤心溢.  红外二次成像无热化光学系统设计与实测 . 红外与激光工程, 2013, 42(12): 3180-3184.
    [20] 姜凯, 周泗忠, 李刚, 杨晓许, 赵睿, 张恒金.  折反式中波红外双视场变焦系统无热化设计 . 红外与激光工程, 2013, 42(2): 403-407.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  14
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-27
  • 修回日期:  2024-01-10
  • 网络出版日期:  2024-04-15
  • 刊出日期:  2024-03-25

环形孔径折叠成像系统的光-数联合无热化设计(封面文章·特邀)

doi: 10.3788/IRLA20240013
    作者简介:

    马德超,男,硕士生,主要从事计算成像方面的研究

基金项目:  国家自然科学基金项目(62105041)
  • 中图分类号: O435

摘要: 环形孔径折叠成像系统通过光路折叠可以实现光学系统的小型化。然而环形孔径折叠成像系统由于仅使用一块基底材料,且没有补偿镜,无法通过光学被动无热化实现宽温度范围的高质量成像。为了减小温度对成像质量影响的同时简化光学系统结构,引入波前编码的方法来设计光-数联合的环形孔径折叠成像系统。文中研究了光-数联合的环形孔径折叠成像系统设计原理,推导了遮拦比与相位掩膜板参数的关系,以实现离焦一致性。在图像解码部分,文中研究了不同权重下的点扩散函数(PSF)的图像复原效果,通过模拟退火算法构建了合成PSF模型。根据理论分析设计了光-数联合的环形孔径折叠成像系统,焦距为70 mm,系统总长为25 mm,F数为1,全视场8°。在−40~60 ℃范围内,高温和低温下的峰值信噪比(PSNR)比其他方法分别提高了4.709 0 dB和5.044 2 dB,实现了单一滤波器的图像复原。文中研究在简化红外成像光学系统的同时,采用光-数联合的方法克服了环形孔径折叠成像系统的温度限制,为宽温度范围红外系统小型化提供了新的思路。

English Abstract

    • 环形孔径折叠成像系统通过折叠光路实现了光学系统总长的压缩。环形孔径折叠成像系统通过在同一基底材料上加工多个环带形同轴反射镜来实现。该技术大大简化了系统的结构,无需额外的校正镜组,就能够显著减小系统的长度,实现了系统的小型化[16]。常用的精密加工方法可以实现环形孔径折叠成像系统的工程化加工,例如单点金刚石车削,精密模压。

      将环形孔径折叠成像系统应用于红外成像领域,可以在缩短系统总长的同时实现高质量成像[7]。然而,由于红外光学材料的折射率温度系数大,当环境温度发生变化时,会出现明显的热离焦,严重影响成像质量[8]。为确保红外成像系统在宽温度范围内的稳定性,必须消除环境温度变化对红外光学系统的影响。但是环形孔径折叠成像系统仅使用一块基底材料,没有加入其他补偿镜,无法实现光学被动无热化。

      光-数联合中的波前编码技术最早由Dowski和Cathey于1995年提出,该技术以傅里叶光学为理论基础,结合模糊函数和稳定相位法(SPM)进行理论分析[9-10]。波前编码技术主要分为编码与解码两步。编码的实现是通过将三次相位掩膜板放置在光学系统光阑处,这样可以使光学系统的光学传递函数(OTF)与点扩散函数(PSF)在一定范围内离焦不敏感。解码的实现是通过对中间编码图像进行图像复原,最终获得清晰的图像。光-数联合技术被应用于光学系统各个方面,例如焦深延拓[11],景深延拓[12],远程动态目标检测[13]等。

      将光-数联合应用于红外环形孔径折叠成像系统中,可以实现光学系统的无热化[1415],相比传统的无热化方法,如机电主动式、机械被动式、光学被动式等,该方法具有设计自由度大、可靠性高、无热化效果好等优点。文中首先研究了环形孔径折叠成像系统的设计原理以及中心遮拦与三次相位掩膜板的变化模型及分析,并且基于上述理论分析设计了光-数联合的环形孔径折叠成像系统,通过构建合成PSF实现了单一滤波器在宽温度范围内的图像解码。这一设计增加了环形孔径折叠成像系统的设计自由度,并简化了光学系统结构。

    • 传统的折射式光学系统与环形孔径折叠成像系统对比如图1所示。其中传统折射式系统如图1(a)所示,通过折叠传统折射式光学系统光路来设计环形孔径折叠成像系统。环形孔径折叠成像系统是通过多个环带形同轴反射镜被加工在同一基底材料的前后表面上制作而成。其中第一个反射面为主反射面,负责主要的光焦度,光线通过入射环带进入系统,通过反射镜多次反射,最终成像在探测器上。该方法显著减小了光学系统的轴向长度,得到了如图1(b)所示的环形孔径折叠成像系统。

      图  1  环形孔径折叠成像系统原理示意图。(a)传统折射系统;(b)环形孔径折叠成像系统

      Figure 1.  Schematic diagram of annular aperture folded imaging system principle. (a) Traditional refractive system; (b) Annular aperture folded imaging system

      环形孔径折叠成像系统通过设置一定的中心遮拦来限制光学系统的进光量,定义系统遮拦比$\varepsilon $为:

      $$ \varepsilon = d/D $$ (1)

      式中:$d$为系统内部遮拦的直径;$D$为系统口径。环形孔径折叠成像系统可以近似表示为遮拦比为$\varepsilon $的环形光瞳,环形光瞳的等效孔径${D_{eff}}$为:

      $$ {D_{eff}} = D\sqrt {1 - {\varepsilon ^2}} $$ (2)

      根据标量衍射理论,环形光瞳在像平面上的光场为:

      $$ \begin{gathered} U(x,y) = \int {\int_{\varepsilon \leqslant {u^2} + {\nu ^2} \leqslant 1} \tau } (u,v)\cdot \\ {\rm{exp}}\left[ {jk{\omega _{20}}({u^2} + {v^2}) - j2\pi (xu + yv)} \right]{\mathrm{d}}u{\mathrm{d}}v \\ \end{gathered} $$ (3)

      式中:$ {\omega _{20}} $为离焦波像差;$ (u,v) $为归一化光瞳函数;$k$为波数。离焦量为$ \Delta f $的离焦波像差为:

      $$ {\omega _{20}} = \frac{{{D_{eff}}^2\Delta f}}{{8{f^2}}} $$ (4)

      将面型改为三次相位掩膜板,$ \tau (u,v) $为三次相位掩膜板的相位,三次相位掩膜板相位的表达式为:

      $$ \tau (u,v) = \alpha ({u^3} + {v^3}) $$ (5)

      式中:$\alpha $为三次相位掩膜板参数。面型参数为$ \eta $的三次相位掩膜板参数可以表示为:

      $$ \alpha = k\frac{{\eta (n - 1){D_{eff}}^3}}{8} $$ (6)

      式中:$n$为透镜材料的折射率。随着相位掩膜板参数$\alpha $的增加,三次相位掩膜板会引入更大的像差,在一定离焦范围内实现PSF的离焦一致性。二维光场的标量衍射理论PSF计算较为复杂,为了简化计算,可以将环形孔径简化为一维的可分离矩形孔径,令

      $$ \kappa (u) = \alpha {u^3} + k{\omega _{20}}{u^2} - 2\pi xu $$ (7)

      PSF可以表示为:

      $$ h(x,y) = \;{\left| {\int_{\varepsilon \leqslant \left| u \right| \leqslant 1}^{} {{{{\rm{exp}}}}(\kappa (u)){\mathrm{d}}u} } \right|^2} $$ (8)

      通过SPM可以求出驻点满足:

      $$ \left\{ \begin{gathered} {\kappa ^\prime }({u_0}) = 3\alpha {u^2} + 2k{\omega _{20}}u - 2\pi x = 0 \\ {\kappa ^{\prime\prime}}({u_0}) = 6\alpha u + 2k{\omega _{20}} = 0 \\ 0 \leqslant {u_0} \leqslant 1 \\ \end{gathered} \right. $$ (9)

      设$3\alpha > > \left| {k{\omega _{20}}} \right|$[16],驻点可以近似为:

      $$ \left\{ \begin{gathered} {u_1} \approx \sqrt {\frac{{2\pi x}}{{3\alpha }}} \\ {u_2} \approx - \sqrt {\frac{{2\pi x}}{{3\alpha }}} \\ \end{gathered} \right. $$ (10)

      将公式(10)代入公式(7)中可以得到:

      $$ \left\{ \begin{gathered} \kappa ({u_1}) \approx \alpha {({u_1})^3} - 2\pi x{u_1} \\ \kappa ({u_2}) \approx \alpha {({u_2})^3} - 2\pi x{u_2} \\ \end{gathered} \right. $$ (11)

      当$ \dfrac{{3\alpha {\varepsilon ^2}}}{{2\pi }} \leqslant x \leqslant \dfrac{{3\alpha }}{{2\pi }} $时,通过上式可以得到PSF为:

      $$ \begin{gathered} h(x,y) \approx \left| {\sqrt {\frac{{2\pi }}{{\left| {{\kappa ^{''}}\left( {{u_1}} \right)} \right|}}} \exp \left\{ {j\frac{\pi }{4} + j\kappa \left( {{u_1}} \right)} \right\}} \right. \cdot \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left. {\sqrt {\frac{{2\pi }}{{\left| {{\kappa ^{''}}\left( {{u_2}} \right)} \right|}}} \exp \left\{ { - j\frac{\pi }{4} + j\kappa \left( {{u_2}} \right)} \right\}} \right|^2{\kern 1pt} {{\kern 1pt} } \\ \end{gathered} $$ (12)

      由此可见,当$3\alpha > > \left| {k{\omega _{20}}} \right|$时,离焦对PSF影响接近于零。结合公式(2)、(4)、(6)可以得到:

      $$ \frac{{\left| {k{\omega _{20}}} \right|}}{{3\alpha }} = \frac{{\Delta f}}{{3\eta {f^2}(n - 1)D\sqrt {1 - {\varepsilon ^2}} }} \approx 0 $$ (13)

      通过分析可以得知,在系统参数与离焦距离都不变的条件下,随着遮拦比$\varepsilon $增大会导致分母逐渐减小,即遮拦比增大会降低PSF的离焦一致性。

    • 随着遮拦比的增大,PSF一致性下降。为了实现更好的离焦一致性,需要继续增大三次相位掩膜板参数$\alpha $。但是随着像差的逐渐增大,图像中的高频信号和噪声信号将变得难以区分,从而导致高频信息的丢失,即图像的可复原性会下降。受到这一限制,在确保图像可复原的前提下,不同温度下的PSF数据并非完全相同。因此,对于含有中心遮拦的光学系统,选取单一温度下的PSF数据无法实现单一滤波器的图像复原。

      为了能够利用单一滤波器对各个温度下的图像进行高质量复原,从编码后的系统数据中提取出了在不同温度的PSF数据,采用了一种以复原图像质量为导向的自适应权值法。通过赋予不同温度下的PSF权值,可以得到一个合成的PSF,实现单一滤波器对不同温度下的编码图像高质量复原。相关公式如下:

      $$ h(x,y) = \frac{{\displaystyle\sum\limits_{i = 0}^{M - 1} {{M_i}h\left( {x,y,\Delta T} \right)} }}{{\displaystyle\sum\limits_{i = 0}^{M - 1} {{M_i}} }} $$ (14)

      式中:$h\left( {x,y,\Delta T} \right)$为不同温度下的PSF;$h(x,y)$为合成PSF。

      模拟退火算法是全局优化算法,具有全局搜索、自适应性、避免陷入局部最优解等优势。通过使用模拟退火算法求出最佳权值,流程图如图2 所示。

      图  2  合成PSF优化流程图

      Figure 2.  Optimization process of the synthetic PSF

      图2所示,在不同视场温度下,为了获取最优的PSF权值,采用模拟退火算法对PSF权值进行优化的流程。首先,从光学系统中提取不同温度下的PSF数据。然后,在初始化阶段为这些数据生成随机初始权值,形成初始的合成PSF。通过合成PSF来对多个不同温度下的编码图像进行复原,并对复原后的图像进行质量评估。通过对复原图像的分析建立了一个综合评估函数,用以指导和调整模拟退火算法中权值的更新和优化。在每次迭代中,算法根据当前的综合评估函数调整权重,生成新的合成PSF,并使用综合评估函数对其进行评估。经过多轮迭代后,输出在综合评估函数中表现最佳的PSF权重,用于生成优化后的合成PSF。

    • 文中设计实例指标如表1所示,设计了用于长波红外(8~12 μm)的环形孔径折叠成像系统,焦距为70 mm,F数为1。基底材料选用的是IRG26,该材料在长波红外波段范围内具有高透过率,并且具有低色散特性,环形孔径折叠成像系统使用单点金刚石车削在基底材料两侧分别加工环带型反射镜而成,此外还可以通过精密模压的方式进行批量化加工,有利于降低加工成本。

      表 1  长波红外环形孔径折叠成像系统设计指标

      Table 1.  Design specifications for long-wave infrared annular aperture folded imaging system

      Parameter Value
      Wavelength/μm 8-12
      F-number 1
      Effective focal length/mm 70
      Field of view (2ω)/(°) 8

      为了满足视场角与探测器尺寸的同时,实现较小的体积,文中选用遮拦比为0.7的环形四次折叠成像系统,最终优化设计的结果如图3所示。

      图3(a)为优化设计后的环形孔径折叠成像系统光学布局图,系统入瞳直径为98 mm,中心遮拦直径为68.6 mm,系统总长为25 mm。图3(b)、(c)为环形孔径折叠成像系统的3D图,蓝色环带表示入光区,银色为反光涂层。在镜体左右两侧分别分布两个环带形反射面,面型为高次非球面,光线通过最外侧环带形折射面进入镜体内部,在内部进行四次反射,最终到达像面。

      图  3  环形孔径折叠成像系统图。(a)光学布局图;(b)实体模型前视图;(c)实体模型后视图

      Figure 3.  Schematic of the annular aperture folded imaging system. (a) Optical layout; (b) Front view of the solid model; (c) Rear view of the solid model

      红外材料的折射率温度系数大,因此当温度发生较大变化时,会产生明显的热离焦,导致不同温度下的图像模糊。不同温度下对应的像面处调制传递函数(MTF)如图4所示。

      通过对图4的分析可以看出,环形孔径折叠成像系统在常温下MTF接近于衍射极限,成像质量较好,但是随着温度变化,MTF下降明显,中高频部分MTF接近于截止。这是由于环形孔径折叠成像系统由单一IRG26基底材料加工而成,IRG26折射率温度系数大会导致较大的热离焦,而且环形孔径折叠成像系统没有补偿镜,难以实现红外消热差。

      图  4  不同温度下环形孔径折叠成像系统MTF

      Figure 4.  MTF of the annular aperture folded imaging system at different temperatures

    • 为了实现宽温度范围红外系统小型化,文中将光-数联合中的波前编码技术引入环形孔径折叠成像系统。光-数联合的环形孔径折叠成像系统通过将环形孔径折叠成像系统进光侧的环带型球面镜加工为环带形三次相位掩膜板来实现位相编码,从而实现热离焦范围内的光线编码,通过提取系统的编码图像与PSF进行图像复原,获得宽温度范围内的高质量成像。

      使用希尔伯特角可以实现三次相位掩膜板参数的优化,可以得到以下公式:

      $$ {\rm{argmax}}\sum\limits_{\Delta T} {{\rm{cos}}} \left( {\frac{{\left\langle {H\left( {\Delta T} \right),H\left( {{T_0}} \right)} \right\rangle }}{{\left\| {H\left( {\Delta T} \right)} \right\|,\left\| {H\left( {{T_0}} \right)} \right\|}}} \right) $$ (15)

      式中:$ H\left( {\Delta T} \right) $与$ H\left( {{T_0}} \right) $分别为不同温度条件下系统的PSF与常温下系统PSF,PSF一致性越趋近于1意味着一致性越好。通过调整三次相位掩膜板参数大小可以输出三次不同相位掩膜板参数下的PSF,然后将PSF数据输入公式(15)中就可以得到该视场温度下的PSF一致性。

      随着三次相位掩膜板参数的增大,PSF逐渐相似的同时会导致高频处MTF值逐渐降低,如果MTF下降太多,则会导致图像高频信息与噪声难以区分,编码图像可复原性大幅下降[16]。为了保证三次相位掩膜板编码的图像可复原,设定一定的阈值使得MTF不会下降太低导致图像信息丢失,如以下公式所示:

      $$ {\rm{s}}.{\rm{t}}.{\rm{min}}\;H\left( {\Delta T} \right) \geqslant TH $$ (16)

      通过上述分析可以得到满足阈值条件下的不同的三次相位掩膜板参数对应的PSF一致性,然后通过比较PSF一致性大小可以求取相似度最高的三次相位掩膜板参数作为输出结果。将光-数联合的环形孔径折叠成像系统的PSF离焦一致性与三次相位掩膜板参数的关系绘制成曲线,如图5所示。

      图  5  光-数联合的环形孔径折叠成像系统相位掩膜板参数与PSF一致性的相关性曲线

      Figure 5.  PSF consistency of light-digital combined annular aperture folding imaging system phase plate parameter

      通过分析图5可以得知,随着三次相位掩膜板参数$\alpha $的增大,PSF一致性逐渐提高,但是由于存在较大的中心遮拦,降低了光-数联合的环形孔径折叠成像系统的PSF一致性。在三次相位掩膜板参数为30 $\pi $时MTF达到阈值,大于该处三次相位掩膜板参数导致图像高频信息与噪声难以区分,编码图像可复原性大幅下降,故选取$\alpha $=30 $\pi $,但是此处的PSF一致性仅为0.710 9。

      通过上述分析可以得到光-数联合的环形孔径折叠成像系统的不同的三次相位掩膜板参数,将其代入可以得到文中设计的环带形三次相位掩膜板,如图6所示。

      图  6  环带型三次相位掩膜板示意图

      Figure 6.  Schematic of the annular cubic phase plate

      图6中,不同颜色对应的是不同的三次相位掩膜板矢高大小。将设计好的环带形三次相位掩膜板加工于环形孔径折叠成像系统入瞳位置,使得光-数联合的环形孔径折叠成像系统在−40~60 ℃温度范围内PSF稳定趋于一致,并通过单一滤波器实现系统的图像复原。加入三次相位掩膜板后,分别提取不同温度下的MTF数据进行对比,如图7所示。

      图  7  不同温度下的光-数联合环形孔径折叠成像系统MTF

      Figure 7.  MTF of the light-digital combined annular aperture folding imaging system at different temperatures

      通过对图7的分析可知,不同视场温度下MTF相似,图像高频信息没有丢失。光-数联合的环形孔径折叠成像系统不同温度下的PSF如图8所示。

      图  8  不同温度下PSF

      Figure 8.  PSF at different temperatures

      通过对图8的分析可知,不同温度下的PSF呈现三次相位掩膜板的等腰三角形形状,由于中心遮拦的存在,中间部分PSF被遮挡,且不同温度下的PSF稍有不同,对应理论分析中心遮拦会降低PSF一致性的结论。

    • 为实现光-数联合的环形孔径折叠成像系统单一滤波器图像复原,通过上述模拟退火算法流程对该范围内的PSF数据进行权重分配计算合成PSF。首先,提取不同温度下的PSF与编码图像,然后初始化每个PSF的权值形成合成PSF,通过设置恰当的综合评估函数不断地迭代优化,能够逐渐接近最优的权值配置,最终获得最佳合成PSF。分别使用像面处PSF与合成PSF对−40、20、60 ℃温度下的编码图像进行图像复原,复原方法选用维纳滤波。复原结果如图9所示,将这些图像与常温下采集的图像进行峰值信噪比(PSNR)评价,结果如表2所示。

      图  9  图像复原的结果。(a)不同温度下的原始图像;(b)使用设计温度下的PSF进行图像复原;(c)使用合成PSF进行图像复原

      Figure 9.  Results of the image restoration. (a) Original images at different temperatures; (b) Image restoration using the PSF at the design temperature; (c) Image restoration using the synthesized PSF

      表 2  使用不同PSF图像复原的PSNR结果

      Table 2.  PSNR values of image restoration using different PSF

      Parameter Temperature/℃
      −40 20 60
      PSNR (PSF at the design temperature)/dB 19.417 3 28.043 2 19.751 9
      PSNR(synthesized PSF)/dB 24.461 5 24.470 9 24.460 9

      图9(a)为环形孔径折叠成像系统在不同温度下的图像,可以看到系统受温度变化影响大,高温与低温下图像模糊。图9(b)与(c)为光-数联合的环形孔径折叠成像系统分别使用不同PSF的图像复原结果,当使用设计温度下的PSF进行图像复原时,在常温下图像复原质量较好,PSNR为28.043 2 dB,在−40 ℃和60 ℃下图像均出现了严重的伪影,导致图像质量极差,−40 ℃下的PSNR仅为19.417 3 dB,60 ℃下的图像PSNR仅为19.751 9 dB;当采用模拟退火算法计算出的合成PSF进行图像复原时,虽然图像复原的质量略低于常温下像面处复原的质量,但总体来看,图像内容清晰可见,质量较好,设计温度下复原图像PSNR虽然下降了3.572 3 dB,但是−40 ℃复原图像的PSNR也从19.417 3 dB提升至24.461 5 dB,提升了5.044 2 dB,60 ℃复原图像的PSNR也从19.751 9 dB提升至 24.460 9 dB,提升了4.709 0 dB。这表明模拟退火算法得到的合成PSF在不同温度下都能够实现较为优质的图像复原效果,是一种实用且有效的方法。

    • 文中解决了红外环形孔径折叠成像系统在温度变化条件下难以实施无热化的问题。为此引入了光-数联合的方法,通过在系统中加入环带型三次相位掩膜板并结合图像复原技术,实现了红外系统的无热化设计。文中推导了中心遮拦与相位掩膜板参数的关系,得出了中心遮拦的增大会降低PSF一致性的结论;针对中心遮拦降低PSF一致性的问题,文中通过模拟退火算法构建合成的PSF,实现了单一滤波器在宽温度范围内高质量图像复原。为了验证文中理论模型的有效性,设计了一款光-数联合的环形孔径折叠成像系统。该系统的焦距为70 mm,系统口径为98 mm,工作波段为8~12 μm,全视场为8°,系统总长仅为25 mm。该系统的各个反射面都分别加工在同一基底的前后表面上,避免了需要额外支架和复杂的调试过程,使系统更加稳定。通过模拟退火算法构建的合成PSF实现了100 ℃温度范围内的高质量图像复原,−40 ℃复原图像PSNR从19.417 3 dB提升至24.461 5 dB,提升了5.044 2 dB,60 ℃复原图像的PSNR从19.751 9 dB提升至 24.460 9 dB,提升了4.709 0 dB。该方法相较于设计温度下PSF图像复原显著地减少了图像的伪影和模糊,实现了单一滤波器的图像复原。综上,这一创新性的系统设计为宽温度范围红外系统小型化提供了新的思路。

参考文献 (16)

目录

    /

    返回文章
    返回