留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中远红外量子级联激光器研究进展(特邀)

赵越 张锦川 刘传威 王利军 刘俊岐 刘峰奇

赵越, 张锦川, 刘传威, 王利军, 刘俊岐, 刘峰奇. 中远红外量子级联激光器研究进展(特邀)[J]. 红外与激光工程, 2018, 47(10): 1003001-1003001(10). doi: 10.3788/IRLA201847.1003001
引用本文: 赵越, 张锦川, 刘传威, 王利军, 刘俊岐, 刘峰奇. 中远红外量子级联激光器研究进展(特邀)[J]. 红外与激光工程, 2018, 47(10): 1003001-1003001(10). doi: 10.3788/IRLA201847.1003001
Zhao Yue, Zhang Jinchuan, Liu Chuanwei, Wang Lijun, Liu Junqi, Liu Fengqi. Progress in mid-and far-infrared quantum cascade laser (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003001-1003001(10). doi: 10.3788/IRLA201847.1003001
Citation: Zhao Yue, Zhang Jinchuan, Liu Chuanwei, Wang Lijun, Liu Junqi, Liu Fengqi. Progress in mid-and far-infrared quantum cascade laser (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003001-1003001(10). doi: 10.3788/IRLA201847.1003001

中远红外量子级联激光器研究进展(特邀)

doi: 10.3788/IRLA201847.1003001
基金项目: 

国家重点研发计划(2017YFB0405303,2016YFB0402303);国家自然科学基金(61790583,61435014,61574136,61627822,61774146)

详细信息
    作者简介:

    赵越(1993-),男,博士生,主要从事高性能量子级联激光器及应用方面的研究。Email:zhaoyue@semi.ac.cn

  • 中图分类号: TN212

Progress in mid-and far-infrared quantum cascade laser (invited)

  • 摘要: 量子级联激光器具有效率高、体积小、功耗低、波长可大范围选取的特点,已经被广泛应用于定向红外对抗系统、自由空间光通信和痕量气体传感等领域。回顾了量子级联激光器近20年的进展。首先总结了量子级联激光器的总体发展历程和发光原理;接着介绍了主要用于定向红外对抗的大功率量子级联激光器的几种典型有源区结构设计,然后讨论了气体传感用的单模分布反馈量子级联激光器;接着又论述了单片集成高亮度量子级联激光器相干阵列的研究情况;此外,还介绍了自由空间通信用的量子级联激光器的发展情况;最后,描述了近些年才出现中红外量子级联激光器光频梳的研究进展。
  • [1] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158):553-556.
    [2] Corrigan P, Martini R, Whittaker E A, et al. Quantum cascade lasers and the Kruse model in free space optical communication[J]. Optics Express, 2009, 17(6):4355-4359.
    [3] Faist J, Capasso F, Sirtori C, et al. Room temperature mid-infrared quantum cascade lasers[J]. Electronics Letters, 1996, 32(6):560-561.
    [4] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553):301-305.
    [5] Faist J, Gmachl C, Capasso F, et al, Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997, 70(20):2670-2672.
    [6] Blaser S, Yarekha D, Hvozdara L, et al. Room-temperature, continuous-wave, single-mode quantum-cascade lasers at 5:4 m[J]. Applied Physics Letters, 2005, 86:1-3.
    [7] Liu F Q, Zhang Y Z, Zhang Q S, et al. High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers[J]. Semiconductor Science and Technology, 2000, 15(12):L44.
    [8] Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency[J]. Applied Physics Letters, 2011, 98(18):181102.
    [9] Hugi A, Villares G, Blaser S, et al. Mid-infrared frequency comb based on a quantum cascade laser[J]. Nature, 2012, 492(7428):229-233.
    [10] Yao D Y, Zhang J C, Liu F Q, et al. Surface emitting quantum cascade lasers operating in continuous-wave mode above 70℃ at 4.6m[J]. Applied Physics Letters, 2013, 103(4):041121.
    [11] Faist J. Quantum Cascade Lasers[M]. Oxford:OUP Oxford, 2013.
    [12] Lyakh A, Patel C K N, Tsvid E, et al. Progress in high-power continuous-wave quantum cascade lasers[J]. Applied Optics, 2017, 56(31):H15.
    [13] Bai Y, Darvish S, Slivken S, et al. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power[J]. Applied Physics Letters, 2008, 92(10):101105.
    [14] Bai Y, Slivken S, Darvish S R, et al. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency[J]. Applied Physics Letters, 2008, 93(2):021103.
    [15] Razeghi M, Slivken S, Bai Y, et al. High power quantum cascade lasers[J]. New Journal of Physics, 2009, 11(12):125017.
    [16] Bai Y, Slivken S, Darvish S R, et al. High power broad area quantum cascade lasers[J]. Applied Physics Letters, 2009, 95(22):221104.
    [17] Bai Y, Bandyopadhyay N, Tsao S, et al. Highly temperature insensitive quantum cascade lasers[J]. Applied Physics Letters, 2010, 97(25):251104.
    [18] Lyakh A, Maulini R, Tsekoun A, et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J]. Applied Physics Letters, 2009, 95(14):141113.
    [19] Lyakh A, Pflugl C, Diehl L, et al. 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6m[J]. Applied Physics Letters, 2008, 92(11):111110.
    [20] Lyakh A, Maulini R, Tsekoun A, et al. Tapered 4.7m quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power[J]. Optics Express, 2012, 20(4):4382-4388.
    [21] Lyakh A, Maulini R, Tsekoun A, et al. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency[J]. Optics Express, 2012, 20(22):24272-24279.
    [22] Maulini R, Lyakh A, Tsekoun A, et al. ~7.1m quantum cascade lasers with 19% wall-plug efficiency at room temperature[J]. Optics Express, 2011, 19(18):17203-17211.
    [23] Lyakh A, Suttinger M, Go R, et al. 5.6m quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%[J]. Applied Physics Letters, 2016, 109(12):121109.
    [24] Lu Q Y, Bai Y, Bandyopadhyay N, et al. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 2011, 98(18):181106.
    [25] Liu Yinghui, Zhang Jinchuan, Jiang Jianmin, et al. Development of surface grating distributed feedback quantum cascade laser for high output power and low threshold current density[J]. Chinese Physics Letters, 2015, 32(2):024202.
    [26] Zhang J, Liu F, Tan S, et al. High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth[J]. Applied Physics Letters, 2012, 100(11):112105.
    [27] Zhang J, Liu F, Yao D, et al. High power buried sampled grating distributed feedback quantum cascade lasers[J]. Journal of Applied Physics, 2013, 113(15):153101.
    [28] Slivken S, Bandyopadhyay N, Tsao S, et al. Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature[J]. Applied Physics Letters, 2012, 100(26):261112.
    [29] Lyakh A, Zory P, D'Souza M, et al. Substrate-emitting, distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 2007, 91(18):181116.
    [30] Zhang J C, Yao D Y, Zhuo N, et al. Directional collimation of substrate emitting quantum cascade laser by nanopores arrays[J]. Applied Physics Letters, 2014, 104(5):052109.
    [31] Cheng F M, Zhang J C, Jia Z W, et al. High power substrate-emitting quantum cascade laser with a symmetric mode[J]. IEEE Photonics Technology Letters, 2017, 29(22):1994-1997.
    [32] Zhao Y, Yan F, Zhang J, et al. Broad area quantum cascade lasers operating in pulsed mode above 100℃ ~4.7m[J]. Journal of Semiconductors, 2017, 38(7):74-77.
    [33] Botez D, Scifres D R. Diode Laser Arrays Vol. 14[M]. Cambridge:Cambridge University Press, 2005.
    [34] Kirch J D, Chang C C, Boyle C, et al. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers[J]. Applied Physics Letters, 2015, 106(6):061113.
    [35] Lyakh A, Maulini R, Tsekoun A, et al. Continuous wave operation of buried heterostructure 4.6 m quantum cascade laser Y-junctions and tree arrays[J]. Optics Express, 2014, 22(1):1203-1208.
    [36] Leger J R. Lateral mode control of an AlGaAs laser array in a Talbot cavity[J]. Applied Physics Letters, 1989, 55(4):334-336.
    [37] Wang L, Zhang J, Jia Z, et al. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity[J]. Optics Express, 2016, 24(26):30275-30281.
    [38] Jia Z, Wang L, Zhang J, et al. Phase-locked array of quantum cascade lasers with an intracavity spatial filter[J]. Applied Physics Letters, 2017, 111(6):061108.
    [39] Heydari D, Bai Y, Bandyopadhyay N, et al. High brightness angled cavity quantum cascade lasers[J]. Applied Physics Letters, 2015, 106(9):941.
    [40] Sergachev I, Maulini R, Bismuto A, et al. Gain-guided broad area quantum cascade lasers emitting 23.5 W peak power at room temperature[J]. Optics Express, 2016, 24(17):19063-19071.
    [41] Paiella R, Martini R, Capasso F, et al. High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers[J]. Applied Physics Letters, 2001, 79(16):2526-2528.
    [42] Calvar A, Amanti M, Renaudat St-Jean M, et al. High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line[J]. Applied Physics Letters, 2013, 102(18):181114.
    [43] Hinkov B, Hugi A, Beck M, et al. Rf-modulation of mid-infrared distributed feedback quantum cascade lasers[J]. Optics Express, 2016, 24(4):3294-3312.
    [44] Blaser S, Hofstetter D, Beck M, et al. Free-space optical data link using Peltier-cooled quantum cascade laser[J]. Electronics Letters, 2001, 37(12):778-780.
    [45] Martini R, Paiella R, Gmachl C, et al. High-speed digital data transmission using mid-infrared quantum cascade lasers[J]. Electronics Letters, 2001, 37(21):1290-1292.
    [46] Liu C W, Zhai S Q, Zhang J C, et al. Free-space communication based on quantum cascade laser[J]. Journal of Semiconductors, 2015, 36(9):094009.
    [47] Pang X, Ozolins O, Schatz R, et al. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature[J]. Optics Letters, 2017, 42(18):3646-3649.
    [48] Luzhanskiy E, Choa F S, Merritt S, et al. Low size, weight and power concept for mid-wave infrared optical communication transceivers based on Quantum Cascade Lasers.GSFC-E-DAA-TN27691[R/OL].[2015-11-20].https://ntrs.nasa.gov/search.jsp?R=20150021900,2015.
    [49] Villares G, Hugi A, Blaser S, et al. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs[J]. Nature Communications, 2014, 5:5192.
    [50] Villares G, Wolf J, Kazakov D, et al. On-chip dual-comb based on quantum cascade laser frequency combs[J]. Applied Physics Letters, 2015, 107(25):251104.
    [51] Jouy P, Wolf J M, Bidaux Y, et al. Dual comb operation of ~8.2m quantum cascade laser frequency comb with 1 W optical power[J]. Applied Physics Letters, 2017, 111(14):141102.
  • [1] 夏迪, 赵佳鑫, 吴家越, 王自富, 张斌, 李朝晖.  硫系集成光频梳(特邀) . 红外与激光工程, 2022, 51(5): 20220312-1-20220312-9. doi: 10.3788/IRLA20220312
    [2] 肖滟兰, 杨艳平, 杨郑宇潇, 胡佳豪, 金丹妮, 耿勇, 周恒.  片上集成克尔光频梳的波分复用光纤通信技术综述(特邀) . 红外与激光工程, 2022, 51(5): 20220291-1-20220291-8. doi: 10.3788/IRLA20220291
    [3] 杨嘉川, 刘容玮, 解晓鹏.  基于微腔光梳的低相噪微波信号产生(特邀) . 红外与激光工程, 2022, 51(5): 20220236-1-20220236-7. doi: 10.3788/IRLA20220236
    [4] 卢启景, 廖令琴, 舒方杰, 李明, 谢树森, 邹长铃.  基于回音壁微腔的可见光波段光频梳研究进展(特邀) . 红外与激光工程, 2022, 51(5): 20220335-1-20220335-17. doi: 10.3788/IRLA20220335
    [5] 孙长征, 郑焱真, 熊兵, 汪莱, 郝智彪, 王健, 韩彦军, 李洪涛, 罗毅.  基于宽禁带氮化物的微腔光频梳进展(特邀) . 红外与激光工程, 2022, 51(5): 20220270-1-20220270-7. doi: 10.3788/IRLA20220270
    [6] 杜俊廷, 常冰, 李照宇, 张浩, 秦琛烨, 耿勇, 谭腾, 周恒, 姚佰承.  中红外光学频率梳:进展与应用(特邀) . 红外与激光工程, 2022, 51(3): 20210969-1-20210969-15. doi: 10.3788/IRLA20210969
    [7] 朱纯凡, 王贤耿, 汪祥, 王瑞军.  中红外量子级联激光器的光子集成(特邀) . 红外与激光工程, 2022, 51(3): 20220197-1-20220197-7. doi: 10.3788/IRLA20220197
    [8] 庞磊, 程洋, 赵武, 谭少阳, 郭银涛, 李波, 王俊, 周大勇.  基于MOCVD生长的4.6 μm中红外量子级联激光器 . 红外与激光工程, 2022, 51(6): 20210980-1-20210980-6. doi: 10.3788/IRLA20210980
    [9] 谭腾, 姚佰承.  新型功能化光纤微腔光频梳 . 红外与激光工程, 2021, 50(5): 20211025-1-20211025-2. doi: 10.3788/IRLA20211025
    [10] 王梦宇, 范乐康, 吴凌峰, 卢志舟, 刘波, 郭状, 谢成峰.  基于超高Q值氟化镁晶体微腔的克尔光频梳产生研究 . 红外与激光工程, 2021, 50(11): 20210481-1-20210481-6. doi: 10.3788/IRLA20210481
    [11] 张鹏泉, 杜铁钧, 史屹君.  掺Tm光纤MOPA准相位匹配单程倍频的单频激光器 . 红外与激光工程, 2020, 49(7): 20200112-1-20200112-5. doi: 10.3788/IRLA20200112
    [12] 李森森, 王毕艺, 周冠军, 刘强虎, 毕祥丽, 吴凡, 王津楠, 李玉, 杨瑞瑶, 王巾, 许宏, 张景胜, 赵万利, 蔡军, 吴卓昆, 闫秀生.  高功率中红外量子级联激光器模块 . 红外与激光工程, 2020, 49(8): 20201027-1-20201027-1.
    [13] 孙悦, 黄新宁, 温钰, 谢小平.  空间激光通信网络中的全光相位再生技术 . 红外与激光工程, 2019, 48(9): 918003-0918003(9). doi: 10.3788/IRLA201948.0918003
    [14] 孟冬冬, 张鸿博, 李明山, 林蔚然, 沈兆国, 张杰, 樊仲维.  定向红外对抗系统中的激光器技术 . 红外与激光工程, 2018, 47(11): 1105009-1105009(10). doi: 10.3788/IRLA201847.1105009
    [15] 宋昭远, 姚桂彬, 张磊磊, 张雷, 龙文.  单频光纤激光器相位噪声的影响因素 . 红外与激光工程, 2017, 46(3): 305005-0305005(4). doi: 10.3788/IRLA201746.0305005
    [16] 余兆安, 姚志宏, 梁圣法, 张锦川, 吕铁良.  基于频率补偿的窄脉冲量子级联激光器快速驱动技术 . 红外与激光工程, 2016, 45(2): 206002-0206002(6). doi: 10.3788/IRLA201645.0206002
    [17] 周浩天, 艾勇, 单欣, 代永红.  自由空间光通信中精跟踪系统的辨识 . 红外与激光工程, 2015, 44(2): 736-741.
    [18] 王怡, 章奥, 马晶, 谭立英.  自由空间光通信系统中弱大气湍流引起的相位波动和强度闪烁对DPSK调制系统的影响 . 红外与激光工程, 2015, 44(2): 758-763.
    [19] 黄龙, 冯国英, 廖宇.  利用超连续谱激光实现自由空间光通信 . 红外与激光工程, 2015, 44(12): 3530-3534.
    [20] 范晋祥, 李亮, 李文军.  定向红外对抗系统与技术的发展 . 红外与激光工程, 2015, 44(3): 789-794.
  • 加载中
计量
  • 文章访问数:  646
  • HTML全文浏览量:  136
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-05
  • 修回日期:  2018-09-03
  • 刊出日期:  2018-10-25

中远红外量子级联激光器研究进展(特邀)

doi: 10.3788/IRLA201847.1003001
    作者简介:

    赵越(1993-),男,博士生,主要从事高性能量子级联激光器及应用方面的研究。Email:zhaoyue@semi.ac.cn

基金项目:

国家重点研发计划(2017YFB0405303,2016YFB0402303);国家自然科学基金(61790583,61435014,61574136,61627822,61774146)

  • 中图分类号: TN212

摘要: 量子级联激光器具有效率高、体积小、功耗低、波长可大范围选取的特点,已经被广泛应用于定向红外对抗系统、自由空间光通信和痕量气体传感等领域。回顾了量子级联激光器近20年的进展。首先总结了量子级联激光器的总体发展历程和发光原理;接着介绍了主要用于定向红外对抗的大功率量子级联激光器的几种典型有源区结构设计,然后讨论了气体传感用的单模分布反馈量子级联激光器;接着又论述了单片集成高亮度量子级联激光器相干阵列的研究情况;此外,还介绍了自由空间通信用的量子级联激光器的发展情况;最后,描述了近些年才出现中红外量子级联激光器光频梳的研究进展。

English Abstract

参考文献 (51)

目录

    /

    返回文章
    返回