留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯代铟卟啉末端功能化的PMMA活性自由基聚合材料制备及光学非线性研究(特邀)

徐超越 马鹏飞 刘大军

徐超越, 马鹏飞, 刘大军. 氯代铟卟啉末端功能化的PMMA活性自由基聚合材料制备及光学非线性研究(特邀)[J]. 红外与激光工程, 2020, 49(12): 20200398. doi: 10.3788/IRLA20200398
引用本文: 徐超越, 马鹏飞, 刘大军. 氯代铟卟啉末端功能化的PMMA活性自由基聚合材料制备及光学非线性研究(特邀)[J]. 红外与激光工程, 2020, 49(12): 20200398. doi: 10.3788/IRLA20200398
Xu Chaoyue, Ma Pengfei, Liu Dajun. Preparation and optical nonlinearity of PMMA living radical polymerization materials functionalized with indium chloride porphyrin (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20200398. doi: 10.3788/IRLA20200398
Citation: Xu Chaoyue, Ma Pengfei, Liu Dajun. Preparation and optical nonlinearity of PMMA living radical polymerization materials functionalized with indium chloride porphyrin (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20200398. doi: 10.3788/IRLA20200398

氯代铟卟啉末端功能化的PMMA活性自由基聚合材料制备及光学非线性研究(特邀)

doi: 10.3788/IRLA20200398
基金项目: 吉林省重点科技研发项目(No.20180201083GX);长春理工大学科技创新基金(No. CX2015006)
详细信息
    作者简介:

    徐超越(1995-),女,硕士生,主要从事功能高分子及助剂方面的研究。Email:360096618@qq.com

    刘大军(1972-),男,教授,博士生导师,主要从事三阶非线性和光限幅领域的研究。Email:DajunLiu319@163.com

  • 中图分类号: O437

Preparation and optical nonlinearity of PMMA living radical polymerization materials functionalized with indium chloride porphyrin (Invited)

  • 摘要: 合成了5,10,15-三苯基-20-(4-羟基苯基)氯代卟啉铟,采用2-氯丙酰氯对其封端作为引发剂,以甲基丙烯酸甲酯为单体,CuCl/PMDETA为催化体系,通过原子转移自由基聚合得到了不对称卟啉铟末端功能化的线形聚甲基丙烯酸甲酯。通过UV-vis、FT-IR和1H-NMR进行结构表征。利用凝胶渗透色谱对聚合物的分子量及分子量分布指数进行测定,测试结果表明,聚合物的分散度范围为1.11~1.21,分子量分布较窄,聚合反应具有良好的可控性。采用倍频锁模Nd:YAG皮秒脉冲激光系统,在输出激光波长532 nm,脉冲宽度21 ps的条件下,利用Z-扫描对系列卟啉化合物的三阶非线性光学性质进行了测试分析,通过对实验数据的模拟和计算表明,聚合度为16,分子量为2414的聚合物三阶非线性极化率值最大,为1.144×10−12 esu。
  • 图  1  InClPor-MMA聚合物合成示意图

    Figure  1.  schematic diagram of InClPor-MMA polymer synthesis

    图  2  不对称氯代铟卟啉引发剂的红外光谱图

    Figure  2.  Infrared spectra of asymmetric indium chloride porphyrin initiator

    图  3  不对称氯代铟卟啉的1H-NMR谱图

    Figure  3.  1H-NMR spectra of asymmetric indium chloride Porphyrin

    图  4  不对称氯代铟卟啉的紫外-可见吸收光谱

    Figure  4.  UV-Vis absorption spectra of asymmetric indium chloride Porphyrin

    图  5  InClPor-MMA聚合物的一级动力学及转化率曲线

    Figure  5.  First order kinetics and conversion curve of InClPor-MMA polymer

    图  6  InClPor-MMA聚合物的分子量及分散度分布曲线

    Figure  6.  Distribution curve of molecular weight and dispersion of InClPor-MMA polymer

    图  7  聚合物的红外光谱图 a-InClPor-MMA16, b-InClPor-MMA20, c-InClPor-MMA26d-InClPor-MMA31

    Figure  7.  Infrared spectra of the polymers a-InClPor-MMA16, b-InClPor-MMA20, c-InClPor-MMA26 and d-InClPor-MMA31

    图  8  聚合物的紫外可见光谱图 a-InClPor-MMA16, b-InClPor-MMA20, c-InClPor-MMA26d- InClPor-MMA31

    Figure  8.  UV-vis spectra of polymers a-InClPor-MMA16, b-InClPor-MMA20, c-InClPor-MMA26 and d-InClPor-MMA31

    图  9  样品的闭孔Z-扫描归一化透射率曲线 (a) InClPor-MMA16, (b) InClPor-MMA20, (c) InClPor-MMA26,(d) InClPor-MMA31

    Figure  9.  Closed aperture Z-scan normalized transmittance curves of samples (a) InClPor-MMA16, (b) InClPor-MMA20, (c) InClPor-MMA26,(d) InClPor-MMA31

    图  10  样品的开孔Z-扫描归一化透射率曲线 (a) InClPor-MMA16, (b) InClPor-MMA20, (c) InClPor-MMA26, (d) InClPor-MMA31

    Figure  10.  Open aperture Z-scan normalized transmittance curves of samples (a) InClPor-MMA16, (b) InClPor-MMA20, (c) InClPor-MMA26, (d) InClPor-MMA31

    表  1  聚合物分子量分布

    Table  1.   Polymer molecular weight distribution

    PolymersPolymerization time/hMn, GPCPDIConv./%
    InClPor-MMA16224141.1114.26
    InClPor-MMA20328651.1320.41
    InClPor-MMA26433961.1627.97
    InClPor-MMA31539041.2134.72
    下载: 导出CSV

    表  2  聚合物的三阶非线性测试结果

    Table  2.   Third-order nonlinear test results of polymers

    Polymersβ/m·W-1γ/esuχ(3)/esu
    InClPor-MMA163.3×10−113.2×10−1911.44×10−13
    InClPor-MMA202.8×10−112.7×10−199.69×10−13
    InClPor-MMA261.85×10−114×10−196.92×10−13
    InClPor-MMA310.44×10−112.9×10−192.75×10−13
    下载: 导出CSV
  • [1] Rao S V, Srinivas N K M N, Rao D N, et al. Studies of third-order optical nonlinearity and nonlinear absorption in tetra tolyl porphyrins using degenerate four wave mixing and Z-scan [J]. Optics Communications, 2000, 182(1-3): 255-264. doi:  10.1016/S0030-4018(00)00808-7
    [2] Wu Xingzhi, Zhou Wenfa, Shen Lei, et al. Conjugated twistacene as high-performance optical limiting material for ultrafast broadband laser protection [J]. Infrared and Laser Engineering, 2019, 48(11): 1103001. doi:  10.3788/IRLA201948.1103001
    [3] Terazima M, Shimizu H, Osuka A. The third-order nonlinear optical properties of porphyrin oligomers [J]. Journal of Applied Physics, 1997, 81(7): 2946-2951. doi:  10.1063/1.364325
    [4] Zhang Jian, Song Yinglin, Yan Xiusheng, et al. Twistacene-modified heteroarenes: synthesis, characterization and optical limiting response [J]. Infrared and Laser Engineering, 2019, 48(11): 1103005. doi:  10.3788/IRLA201948.1103005
    [5] Ma Pengfei, Liu Dajun, Zhou Fenguo. Study on preparation and performance of nonlinear optical limiting of polymers material containing indium phthalocyanine and graphene oxide [J]. Infrared and Laser Engineering, 2020, 49(1): 0107001.
    [6] Blau W, Byrne H, Dennis W M, et al. Reverse saturable absorption in tetraphenylporphyrins [J]. Optics Communications, 1985, 56(1): 25-29. doi:  10.1016/0030-4018(85)90059-8
    [7] Liu M O, Tai C H, Wang W Y, et al. Microwave-assisted synthesis and reverse saturable absorption of phthalocyanines and porphyrins [J]. Journal of Organometallic Chemistry, 2004, 689(6): 1078-1084. doi:  10.1016/j.jorganchem.2004.01.017
    [8] Zheng Wenqi, Shan Ning, Fa Huanbao, et al. Optical limiting properties of porphyrin monomers and dimers [J]. Journal of Jilin University(Science Edition), 2013, 51(1): 135-139.
    [9] Li D J, Gu Z G, Zhang J. Auto-controlled fabrication of a metal-porphyrin framework thin film with tunable optical limiting effects [J]. Chemical Ence, 2020: 11.
    [10] Hafiz Muhammad Asif,Arshad Iqbal,Yunshan Zhou, et al. Preparation, characterization and third order optical nonlinearities of looped covalently bonded Anderson-type polyoxometalate-porphyrin hybrids [J]. Dyes and Pigments, 2021, 184: 108758. doi:  10.1016/j.dyepig.2020.108758
    [11] Xiao Y H, Gu Z G, Zhang J. Vapor-assisted epitaxial growth of porphyrin-based MOF thin film for nonlinear optical limiting [J]. Science China-Chemistry, 2020, 63(8): 1059-1065.
    [12] Wang A, Cheng L, Chen X, et al. Efficient optical limiting of polypyrrole ternary nanohybrids co-functionalized with peripherally substituted porphyrins and axially coordinated metal-porphyrins [J]. Dalton Transactions, 2019, 48: 14467-14477.
    [13] Jiang P, Zhang B, Liu Z, et al. MoS2 quantum dots chemically modified with porphyrin for solid-state broadband optical limiters [J]. Nanoscale, 2019, 11(43): 20449-20455. doi:  10.1039/C9NR06604G
  • [1] 吕桓林, 梁宇鑫, 韩秀友, 谷一英, 武震林, 赵明山.  基于狭缝波导的聚合物基微环折射率传感器研究 . 红外与激光工程, 2020, 49(1): 0118001-0118001(6). doi: 10.3788/IRLA202049.0118001
    [2] 史衍丽, 朱泓遐, 杨雪艳, 曾辉, 李再波, 刘辰, 王建, 王伟.  InP基自由运行模式单光子APD . 红外与激光工程, 2020, 49(1): 0103005-0103005(8). doi: 10.3788/IRLA202049.0103005
    [3] 顾兵, 胡月球, 闻博.  矢量光场激发三阶非线性光学效应的研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201050-1-20201050-13. doi: 10.3788/IRLA20201050
    [4] 马鹏飞, 刘大军, 周奋国.  铟酞菁/氧化石墨烯高分子材料的制备及非线性光限幅性能研究 . 红外与激光工程, 2020, 49(1): 0107001-0107001(8). doi: 10.3788/IRLA202049.0107001
    [5] 常存, 隋净蓉, 常青, 张东帅.  CdTe和CdS量子点的非线性特性对比 . 红外与激光工程, 2018, 47(3): 306004-0306004(6). doi: 10.3788/IRLA201847.0306004
    [6] 康子建, 谷一英, 朱文武, 范峰, 胡晶晶, 赵明山.  利用DFB激光器非线性的高线性射频光传输链路 . 红外与激光工程, 2016, 45(8): 806004-0806004(5). doi: 10.3788/IRLA201645.0806004
    [7] 贺静波, 许江湖.  无色散光纤信道的非线性演化 . 红外与激光工程, 2016, 45(4): 422004-0422004(5). doi: 10.3788/IRLA201645.0422004
    [8] 李海超, 满益云.  基于非均匀同区域线性CCD成像的卫星姿态调整与非线性定标方法 . 红外与激光工程, 2015, 44(4): 1370-1376.
    [9] 王利国, 吴振森, 王明军, 王万君, 张耿.  湍流大气中部分相干光二阶统计特性的三参数模型及其应用 . 红外与激光工程, 2015, 44(1): 317-320.
    [10] 杜凯, 牟晓勇, 余大斌, 张金花, 王峰, 赵明辉.  高品质三元CdxPb1-xSe量子点的制备与非线性光学性能研究 . 红外与激光工程, 2015, 44(5): 1549-1553.
    [11] 常青, 常存, 孔德贵, 高亚臣, 高美玲.  中心金属原子对萘酞菁化合物激发态的光学非线性增强效应 . 红外与激光工程, 2015, 44(2): 466-470.
    [12] 黄法军, 万秋华, 杨守旺, 赵长海, 于海.  莫尔条纹光电信号的非线性跟踪微分测速方法 . 红外与激光工程, 2014, 43(6): 1930-1935.
    [13] 颜子恒, 眭晓林, 刘波, 张颖, 曹昌东, 熊文龙, 张大勇, 赵鸿.  激光多普勒测速中连续波调频非线性的分析与校正 . 红外与激光工程, 2014, 43(8): 2413-2418.
    [14] 范哲, 张春熹, 牛燕雄, 孙绪印, 罗娜, 潘建业.  光电探测器非线性响应对相干激光多普勒测速仪的影响 . 红外与激光工程, 2014, 43(7): 2103-2107.
    [15] 吴幸智, 刘大军, 杨俊义, 宋瑛林.  新型金属铟酞菁酯的光学非线性和光限幅特性 . 红外与激光工程, 2014, 43(1): 108-112.
    [16] 高陈强, 阎兵早, 李强.  基于非线性映射模型的红外弱小目标图像仿真 . 红外与激光工程, 2013, 42(11): 2919-2924.
    [17] 陶世兴, 杨丽玲, 赵新才, 胡腾, 李建中, 彭其先.  双曲正割脉冲在光纤中传输的非线性效应 . 红外与激光工程, 2013, 42(10): 2669-2671.
    [18] 甘霖, 张合, 张祥金, 冯颖.  非线性发射过载对激光引信光学接收系统的影响 . 红外与激光工程, 2013, 42(9): 2364-2369.
    [19] 左林, 杨爱英, 赖俊森, 孙雨南.  非线性偏振旋转锁模光纤激光器数值模型 . 红外与激光工程, 2013, 42(1): 57-62.
    [20] 杨秀峰, 董凤娟, 童峥嵘, 曹晔.  利用非线性偏振旋转效应的可调谐多波长光纤激光器 . 红外与激光工程, 2012, 41(1): 53-57.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2020-11-25
  • 网络出版日期:  2021-01-14
  • 刊出日期:  2020-12-25

氯代铟卟啉末端功能化的PMMA活性自由基聚合材料制备及光学非线性研究(特邀)

doi: 10.3788/IRLA20200398
    作者简介:

    徐超越(1995-),女,硕士生,主要从事功能高分子及助剂方面的研究。Email:360096618@qq.com

    刘大军(1972-),男,教授,博士生导师,主要从事三阶非线性和光限幅领域的研究。Email:DajunLiu319@163.com

基金项目:  吉林省重点科技研发项目(No.20180201083GX);长春理工大学科技创新基金(No. CX2015006)
  • 中图分类号: O437

摘要: 合成了5,10,15-三苯基-20-(4-羟基苯基)氯代卟啉铟,采用2-氯丙酰氯对其封端作为引发剂,以甲基丙烯酸甲酯为单体,CuCl/PMDETA为催化体系,通过原子转移自由基聚合得到了不对称卟啉铟末端功能化的线形聚甲基丙烯酸甲酯。通过UV-vis、FT-IR和1H-NMR进行结构表征。利用凝胶渗透色谱对聚合物的分子量及分子量分布指数进行测定,测试结果表明,聚合物的分散度范围为1.11~1.21,分子量分布较窄,聚合反应具有良好的可控性。采用倍频锁模Nd:YAG皮秒脉冲激光系统,在输出激光波长532 nm,脉冲宽度21 ps的条件下,利用Z-扫描对系列卟啉化合物的三阶非线性光学性质进行了测试分析,通过对实验数据的模拟和计算表明,聚合度为16,分子量为2414的聚合物三阶非线性极化率值最大,为1.144×10−12 esu。

English Abstract

    • 卟啉是一类具有大环共轭芳香体系结构的化合物。由于分子的共轭芳香体系,电子离域程度大,使得卟啉表现出显著的三阶非线性响应特征。在光转移、信号处理、光限幅材料等方面的应用得到了迅速的发展[1-5]。Blau[6]第一次在文献中阐述了卟啉衍生物分子的光限幅特性。目前,科研人员经由改变大环分子外侧苯环上取代基团、内部配位金属的种类以及卟啉分子骨架等方式增大卟啉化合物的χ(3)值,大大改善了材料的光限幅性能。2004年,Liu等[7]利用溶胶-凝胶的方法合成出了卟啉衍生物与TEOS、PVB的复合材料,卟啉衍生物在凝胶这种介质中表现出了良好的活性,介质凝胶拥有良好的抗激光损伤能力。在不对称卟啉方面,2013年,Zheng等[8]通过Alder方法,成功地将取代基结构有差别的卟啉通过苯环的对位连接起来,并且还制备出另外三种性质不一样的桥联基团的卟啉二聚体,对合成出来的单体和二聚体进行了Z-扫描及光限幅测试。

      虽然国内外众多学者通过掺杂、自组装等方法不断将卟啉类化合物材料化、功能化。但是,此类方法存在卟啉在掺杂过程中分散不均匀和低聚等众多缺点,使其难以实现大规模市场化应用。而原子转移自由基聚合(ATRP)技术能够通过对分子的设计而制得具有不同拓扑结构、不同功能化和不同组成的多种结构确定的聚合物或者是有机/无机杂化材料[9-13],可以克服传统方法的不足。

      文中中合成了5,10,15-三苯基-20-(4-羟基苯基)氯代卟啉铟,采用2-氯丙酰氯对其封端作为引发剂,以甲基丙烯酸甲酯为单体,CuCl/PMDETA为催化体系,通过ATRP方法得到了不对称卟啉铟末端功能化的线形聚甲基丙烯酸甲酯。凝胶渗透色谱、Z-扫描等测试结果表明,聚合物的分散度范围为1.11~1.21,分子量分布较窄,说明聚合反应具有良好的可控性;通过对聚合物实验数据的模拟计算表明,聚合度为16,分子量为2414的聚合物三阶非线性极化率值最大,为1.144×10−12 esu,其非线性性能非常优良。因此,通过ATRP方法制备的聚合物,聚合反应可控,分子量分布窄,三阶非线性性能优良,对卟啉类化合物规模化生产应用具有重要的价值。

    • 5,10,15-三苯基-20-(4-羟基苯基)氯代卟啉铟(InClPor)为自制;甲基丙烯酸甲酯(MMA,AR)使用前减压蒸馏;其它试剂均为市售AR产品,使用前进行纯化处理。

      FTIR-8400S FT-IR光谱仪为日本SHIMADZU公司,JEOLJNM-A400核磁共振仪为美国Varian公司,PE Series 200 GPC色谱仪为美国PE公司,PMMA为标样进行普适校正;UV-Vis 1240型紫外-可见分光光谱仪,Z-扫描测量系统为苏州大学组装。

    • 将5,10,15-三苯基-20-(4-羟基苯基)氯代卟啉铟(0.3 mmol)溶解于15 mL的CH2Cl2中,将三口烧瓶置于冰水浴中,搅拌,加入三乙胺(1.5 mmol),然后在氮气保护下,用注射器逐滴加入2-氯丙酰氯(1.5 mmol),反应24 h。反应完成后,用去离子水萃取除去三乙胺盐,再旋转蒸发除去二氯甲烷,在真空干燥箱中完全干燥后,乙酸乙酯为淋洗液,利用柱层析进行分离提纯,产率为67%。

    • 将3 mL DMF加入到聚合管中,然后分别加入0.007 mmol不对称氯代铟卟啉引发剂、0.035 mmol配体PMDETA和甲基丙烯酸甲酯(MMA),溶解于DMF中。抽真空,通氮气,然后加热融化,如此重复进行两次后,在冷冻的情况下加入0.035 mmol CuCl,再经过两次的冷冻、融化后,用封口膜密封聚合管。将聚合管置于60 ℃的油浴锅中,在搅拌的情况下进行ATRP聚合反应,聚合时间分别为2 h,3 h,4 h和5 h。反应结束后,用四氢呋喃(THF)将聚合管中的聚合物稀释,利用中性Al2O3柱分离提纯,以THF为淋洗液,除去聚合物中的铜络合物。除去四氢呋喃后,逐滴滴入去离子水和甲醇的等体积混合液中,陈化约1 h后,过滤并收集滤饼,置于真空干燥箱中60 ℃的条件下进行干燥,即得到InClPor-MMA聚合物。如图1所示。

      图  1  InClPor-MMA聚合物合成示意图

      Figure 1.  schematic diagram of InClPor-MMA polymer synthesis

    • (1) 红外光谱

      如红外光谱图2所示,产物在1600 cm−1、1630 cm−1处有较强的吸收峰,归属于苯环上C=C的伸缩振动峰,而在1440 cm−1、1385 cm−1处的吸收峰对应吡咯环上C-N 的伸缩振动峰,在2920 cm−1和1396 cm−1处出现-CH3的伸缩振动峰,以及1735 cm−1处的C=O伸缩振动峰,这均证明已合成出了不对称氯代铟卟啉引发剂。

      图  2  不对称氯代铟卟啉引发剂的红外光谱图

      Figure 2.  Infrared spectra of asymmetric indium chloride porphyrin initiator

      (2) 1H核磁共振谱

      图3为不对称氯代铟卟啉引发剂的1H核磁共振谱,其中δ=8.83 ppm处为吡咯环上质子的化学位移,δ=8.21 ppm处为苯环上的邻位质子峰,苯环上的间、对位质子峰出现在δ=7.75 ppm处,δ=7.21 ppm处为酯基所在苯环的间位质子峰,δ=4.80 ppm和δ=1.97 ppm处分别为与氯原子相连的α位和β位碳上的质子的化学位移,无金属卟啉环内和羟基上的质子吸收峰都消失,图中峰面积与对应氢的个数成正比。

      图  3  不对称氯代铟卟啉的1H-NMR谱图

      Figure 3.  1H-NMR spectra of asymmetric indium chloride Porphyrin

      (3) 紫外-可见吸收光谱

      图4是不对称氯代铟卟啉引发剂的紫外-可见吸收光谱,有两种类型的吸收带,分别是电子从基态S0跃迁至第二激发单重态S2产生的一个Soret带和跃迁至第一激发单重态S1产生的较弱的Q带。Soret带为卟啉化合物的特征吸收带,位于416 nm处,Q带出现于563 nm和643 nm。

      图  4  不对称氯代铟卟啉的紫外-可见吸收光谱

      Figure 4.  UV-Vis absorption spectra of asymmetric indium chloride Porphyrin

    • (1) 原子转移自由基聚合动力学研究

      经GPC测试,聚合时间分别为2、3、4和5 h所得InClPor-MMA聚合物的分子量和转化率数据如表1所示,聚合度分别为16、20、26、31。

      表 1  聚合物分子量分布

      Table 1.  Polymer molecular weight distribution

      PolymersPolymerization time/hMn, GPCPDIConv./%
      InClPor-MMA16224141.1114.26
      InClPor-MMA20328651.1320.41
      InClPor-MMA26433961.1627.97
      InClPor-MMA31539041.2134.72

      InClPor-MMA聚合物的动力学转化曲线、分子量及分散度分布曲线如图5图6所示。

      图  5  InClPor-MMA聚合物的一级动力学及转化率曲线

      Figure 5.  First order kinetics and conversion curve of InClPor-MMA polymer

      图  6  InClPor-MMA聚合物的分子量及分散度分布曲线

      Figure 6.  Distribution curve of molecular weight and dispersion of InClPor-MMA polymer

      图5可以看出,随着单体转化率的增大,聚合物的数均分子量(Mn)呈线形增长,说明ATRP反应对聚合物分子具有良好的可控性。随着单体转化率的增高及聚合时间的增长,分子量的分布指数(PDI)呈逐步增大的趋势,但仍可以保持在1.11~1.21这个较小的范围内,符合活性聚合的基本条件。动力学曲线图6是ln([M]0/[M]t)(初始单体浓度[M]0与反应时间t时的单体浓度[M]t比值的对数)和反应时间的关系图。图中显示两者呈现良好的线形关系,说明此聚合反应符合是一级动力学,同时,增长型自由基的浓度在聚合进行的过程中始终保持不变,而且单体转化率也随反应进行时间的增长而增加,但随反应时间的逐渐增长,增加趋于平缓,这是由于反应时间延长而使部分活性种失活,符合活性可控聚合的特点。

      (2) 红外光谱

      图7为聚合物的红外光谱图,在2950 cm−1和1455 cm−1左右处出现-CH3的伸缩和弯曲振动峰,在1450 cm−1左右处的吸收峰属于苯环上-CH2-的剪式振动,且1735 cm−1处出现C=O的伸缩振动峰,而且随着聚合度的增大,重复链段处吸收峰的强度明显增大。

      图  7  聚合物的红外光谱图 a-InClPor-MMA16, b-InClPor-MMA20, c-InClPor-MMA26d-InClPor-MMA31

      Figure 7.  Infrared spectra of the polymers a-InClPor-MMA16, b-InClPor-MMA20, c-InClPor-MMA26 and d-InClPor-MMA31

      (3) 紫外-可见吸收光谱

      图8为聚合物的紫外-可见吸收光谱,从图中可以看出InClPor-MMA聚合物均有一个Soret带和两个Q带,随着聚合物分子量的增大,峰强逐渐减低。与单羟基苯基卟啉相比,Soret带和Q带均发生了蓝移,这是因为甲基丙烯酸甲酯的高分子重复链段使侧基的吸电子效应增强,而且随着聚合度的增大,对侧基的吸电子效应影响越大。

      图  8  聚合物的紫外可见光谱图 a-InClPor-MMA16, b-InClPor-MMA20, c-InClPor-MMA26d- InClPor-MMA31

      Figure 8.  UV-vis spectra of polymers a-InClPor-MMA16, b-InClPor-MMA20, c-InClPor-MMA26 and d-InClPor-MMA31

    • 将聚合物样品分别溶解在DMF溶剂中进行Z-扫描测试,实验中所用激光光源为倍频锁模Nd:YAG皮秒脉冲激光系统,输出激光波长为532 nm,脉冲能量为1.08 μJ,脉冲宽度为21 ps,频率为10 Hz,所用光束为top-hat光束,top-hat光的孔径光阑为4.8 mm,小孔半径为1.5 mm,小孔透过率17%,透镜焦距400 mm。经计算衍射长度为3.4 mm,样品池的厚度为2 mm,此时样品相当于薄样品。

      在该实验条件下四个样品的闭孔、开孔Z-扫描曲线如图9图10所示。

      图  9  样品的闭孔Z-扫描归一化透射率曲线 (a) InClPor-MMA16, (b) InClPor-MMA20, (c) InClPor-MMA26,(d) InClPor-MMA31

      Figure 9.  Closed aperture Z-scan normalized transmittance curves of samples (a) InClPor-MMA16, (b) InClPor-MMA20, (c) InClPor-MMA26,(d) InClPor-MMA31

      图  10  样品的开孔Z-扫描归一化透射率曲线 (a) InClPor-MMA16, (b) InClPor-MMA20, (c) InClPor-MMA26, (d) InClPor-MMA31

      Figure 10.  Open aperture Z-scan normalized transmittance curves of samples (a) InClPor-MMA16, (b) InClPor-MMA20, (c) InClPor-MMA26, (d) InClPor-MMA31

      图9可以看到,四个样品的透过率曲线都出现先谷后峰的情况,并且折射率都是正值,由此判断出产生了自聚焦效应,同时峰谷具有不对称性,波谷的强度明显大于波峰,说明不对称铟卟啉聚合物具有非线性吸收的特性。不同脉冲宽度激光对卟啉类材料样品的吸收测试表明,所制备的聚合物中的双光子吸收可以不考虑,非线性吸收源自于激发态吸收。

      开孔条件下,样品的归一化透射率曲线为下式所示:

      $$ T({\textit{z}},S = 1) = \sum\limits_{m = 0}^\infty {\dfrac{{{{[ - {q_0}({\textit{z}},0)]}^m}}}{{{{(m + 1)}^{3/2}}}}},m=0,1 $$ (1)

      式中,

      $$ {q_0}({\textit{z}},t) = \beta {I_0}(t){L_{eff}}/(1 + {{\textit{z}}^2}/{\textit{z}}_0^2),{\textit{z}}=0 $$ (2)
      $$\beta (MKS) = \frac{{4(1 - T(0))}}{{{I_0}{L_{eff}}}}$$ (3)

      其中,T为透过率;β为样品的非线性吸收系数;I0光功率密度;Leff=(1-eαL) /α为有效样品厚度,α是样品的线性吸收系数;z为样品距焦点的距离。

      ${\textit{z}} = 0$处的瞬时光强为I(0)。当$\;\beta $值不是很大时,公式(3)可以取一级近似,得

      $$\beta = \frac{{{{\textit{z}}^{\frac{3}{2}}}[1 - T(0)]}}{{I(0){L_{eff}}}}$$ (4)
      $${\chi ^{(3)}} = \chi _R^{(3)} + i\chi _I^{(3)}$$ (5)
      $$\chi _R^{(3)}(MKS) = 2n_0^2{\varepsilon _0}c\gamma $$ (6)
      $$ \chi _I^{(3)}(MKS) = \dfrac{{n_0^2{\varepsilon _0}{c^2}}}{\omega }\beta $$ (7)

      式中:T(0)是z=0处的开孔透射率。

      图9图10实验数据进行拟合和计算,得到的结果如表2所示。

      表 2  聚合物的三阶非线性测试结果

      Table 2.  Third-order nonlinear test results of polymers

      Polymersβ/m·W-1γ/esuχ(3)/esu
      InClPor-MMA163.3×10−113.2×10−1911.44×10−13
      InClPor-MMA202.8×10−112.7×10−199.69×10−13
      InClPor-MMA261.85×10−114×10−196.92×10−13
      InClPor-MMA310.44×10−112.9×10−192.75×10−13

      从表中可以看出,全部样品均具有较好的三阶非线性光学性质,并且随着聚合度增大,不对称氯代铟卟啉聚合物的三阶非线性系数明显减小,聚合物的聚合度为16,分子量是2414时,其三阶非线性极化率值最大,为1.144×10−12 esu。这是由于随着分子链的延长,功能端氯代铟卟啉在聚合物中的浓度比例下降,并且主要影响非线性吸收系数,对非线性折射率的影响不大。

    • 以不对称单羟基不对称氯代金属卟啉与2-氯丙酰氯反应合成不对称金属卟啉引发剂,选用甲基丙烯酸甲酯(MMA)为单体,CuCl/PMDETA体系作为催化体系,通过原子转移自由基聚合(ATRP)得到不对称金属卟啉线形聚合物,且聚合物的分散度在1.11~1.21范围内。

      通过控制聚合时间,得到4种不同分子量的聚合物样品,分析聚合物的紫外-可见光谱发现典型的Soret带和Q带,且随分子量增加峰值降低,是由于不对称氯代铟卟啉在分子中所占比例减少。聚合物Z-扫描测试结果表明,聚合物分子量最小为2414的聚合度为16的InClPor-MMA16样品三阶非线性极化率值为1.144×10−12 esu。综上,通过ATRP方法制备氯代铟卟啉末端功能化的PMMA活性自由基聚合材料,聚合反应可控,分子量分布窄,三阶非线性性能优良,对卟啉类化合物规模化生产应用具有重要的价值.

参考文献 (13)

目录

    /

    返回文章
    返回