留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微秒脉冲激光钠导引星星群技术研究(特邀)

卞奇 薄勇 彭钦军 李敏 魏凯 张雨东 冯麓 薛随建

卞奇, 薄勇, 彭钦军, 李敏, 魏凯, 张雨东, 冯麓, 薛随建. 微秒脉冲激光钠导引星星群技术研究(特邀)[J]. 红外与激光工程, 2022, 51(6): 20220321. doi: 10.3788/IRLA20220321
引用本文: 卞奇, 薄勇, 彭钦军, 李敏, 魏凯, 张雨东, 冯麓, 薛随建. 微秒脉冲激光钠导引星星群技术研究(特邀)[J]. 红外与激光工程, 2022, 51(6): 20220321. doi: 10.3788/IRLA20220321
Bian Qi, Bo Yong, Peng Qinjun, Li Min, Wei Kai, Zhang Yudong, Feng Lu, Xue Suijian. Technology of microsecond-pulse sodium laser guide stars asterism (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220321. doi: 10.3788/IRLA20220321
Citation: Bian Qi, Bo Yong, Peng Qinjun, Li Min, Wei Kai, Zhang Yudong, Feng Lu, Xue Suijian. Technology of microsecond-pulse sodium laser guide stars asterism (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220321. doi: 10.3788/IRLA20220321

微秒脉冲激光钠导引星星群技术研究(特邀)

doi: 10.3788/IRLA20220321
基金项目: 国家自然科学基金(62005295);国家重点研发计划(2016 YFB0402103)
详细信息
    作者简介:

    卞奇,男,助理研究员,博士,主要从事钠信标激光及其应用技术方面的研究

    通讯作者: 薄勇,男,研究员,博士,主要从事固体激光及其频率变换技术方面的研究。
  • 中图分类号: O437

Technology of microsecond-pulse sodium laser guide stars asterism (Invited)

Funds: National Natural Science Foundation of China (62005295);National Key Research and Development Program of China(2016 YFB0402103)
  • 摘要: 激光钠导引星被称为人造恒星,用于探测和校正光波经大气湍流引起的波前畸变,大幅度提高自适应光学望远镜的成像质量。采用单颗钠导引星探测的有效视场范围有限,通过多束黄激光分别激发大气电离层钠原子产生多颗钠导引星,能在较大视场内获得更清晰的目标成像,在精密天文观测、空间目标探测等领域具有重要应用。文中重点介绍了微秒脉冲激光钠导引星星群的产生,基于100 W级微秒脉冲激光,采用小角度精密偏振分光/并束调控的专利技术,在丽江天文台通过一台发射望远镜将四束20 W/束、重复频率kHz、脉冲宽度百微秒的钠激光发射到天空,在40"观测视场内生成四颗导引星,星群构型可调控,如线形、平行四边形、菱形和正方形等,每颗钠导引星亮度约为V波段8等星,光斑大小约3.25"。利用脉冲同步控制技术,钠导引星回波信号可以避免瑞利散射光的干扰,从而获得更高的空间分辨率。这为大口径天文望远镜多层共轭校正系统的研制提供技术参考。
  • 图  1  激光钠导引星星群系统的实验装置(BS为光束整形器;HW为半波片;HR为高反镜;P为偏振片;QWP为四分之一波片;PD为光电检测器;OC为光学斩波器;CCD为电荷耦合器件;p为水平偏振;s为竖直偏振;Ll/Lr为与x轴呈135°/45°的线性偏振;Cl/Cr左旋圆偏振/右旋圆偏振)

    Figure  1.  Experimental configuration of multiple sodium LGS system (BS, beam shaper; HW, half-wave plate; HR, high reflection mirror; P, thin film polarizer; QWP, quarter-wave plate; PD, photo detector; OC, optical chopper; CCD, charge-coupled device; p, horizontal polarization; s, vertical polarization; Ll/Lr, linearly polarization at a 135°/45° to the x-axis; Cl/Cr, left-hand/right-hand circular polarization)

    图  2  钠信标激光器输出平均功率测量结果

    Figure  2.  Measurement results of average output power of sodium laser

    图  3  钠信标激光器的波长与线宽测量结果

    Figure  3.  Measurement results of sodium laser wavelength and linewidth

    图  4  脉冲序列测量(a) s偏振激光1; (b) p偏振激光2; (c) 交替s/p偏振合束激光

    Figure  4.  Pulse traces measurement of (a) s-polarized laser-1; (b) p-polarized laser-2; (c) Combined laser with alternate s/p polarization

    图  5  两台钠信标激光器安装在1.8 m望远镜上

    Figure  5.  Photograph of two sodium laser facility on 1.8 m telescope

    图  6  不同形状的激光钠导引星星群和瑞利散射图像

    Figure  6.  Images of sodium LGS asterism and Rayleigh scattering with different configurations

    图  7  单颗激光钠导星光斑大小(块:测量结果;线:高斯拟合)

    Figure  7.  Spot size of single sodium LGS(Squares: Experimental results; Solid line: Gaussian fitting)

    图  8  正交圆偏振和正交线偏振的钠导引星回波强度随激光功率的变化

    Figure  8.  LGS flux for orthogonally circular and orthogonally linear polarization versus laser power

    图  9  模拟的瑞利和激光钠导引星回波信号(插图:无瑞利干扰的激光钠导引星图像)

    Figure  9.  Simulated echo of Rayleigh and sodium LGS(Inset: Sodium LGS image without Rayleigh)

  • [1] Deng K R, Wei K, Jin K, et al. Research on high-contrast imaging performance of 1.8 m telescope sodium beacon adaptive optical system [J]. Infrared and Laser Engineering, 2020, 49(8): 20200058. (in Chinese) doi:  10.3788/IRLA20200058
    [2] Yang X Z, Kitzler O, Spence D J, et al. Diamond sodium guide star laser [J]. Optics Letters, 2020, 45(7): 1898-1891. doi:  10.1364/OL.387879
    [3] Huo X W, Qi Y Y, Zhang Y, et al. Research development of 589 nm laser for sodium laser guide stars [J]. Optics and Lasers in Engineering, 2020, 134: 106207. doi:  10.1016/j.optlaseng.2020.106207
    [4] Wizinowich P, Chin J, Correia C, et al. Keck all sky precision adaptive optics [C]//Proc of SPIE, 2020, 11448: 114480 E.
    [5] Dam M A, Hernando Y M, Cagigal M N, et al. Overcoming the effect of pupil distortion in multiconjugate adaptive optics [C]//Proc of SPIE, 2020, 11448: 11448 P.
    [6] Neichel B, Lu J R, Rigaut F, et al. Astrometric performance of the Gemini multi-conjugate adaptive optics system in crowded fields [J]. Monthly Notices of the Royal Astronomical Society, 2014, 445: 500-514. doi:  10.1093/mnras/stu1766
    [7] Xu Z Y, Bo Y, Peng Q J, et al. Progress on sodium laser guide star [J]. Infrared and Laser Engineering, 2016, 45(1): 0101001. (in Chinese) doi:  10.3788/irla201645.0101001
    [8] Xie S Y, Wang C L, Bo Y, et al. High-power quasi-continuous microsecond pulse sodium guide star laser [J]. Optics and Precision Engineering, 2017, 25(10): 2661-2667. (in Chinese) doi:  10.3788/OPE.20172510.2661
    [9] Calia D B, Hackenberg W, Holzlöhner R, et al. The four-laser guide star facility: Design considerations and system implementation [J]. Advanced Optical Technologies, 2014, 6: 0025.
    [10] Huang J, Wei K, Jin K, et al. Study on spot size and photon return of a sodium laser guide star [J]. Infrared and Laser Engineering, 2019, 48(1): 0106004. (in Chinese) doi:  10.3788/IRLA201948.0106004
    [11] Bian Q, Bo Y, Zuo J W, et al. High-power repetition rate- and pulse width-tunable 589 nm versatile laser for adaptive optical systems [J]. Optics Express, 2020, 28(9): 13895-13906. doi:  10.1364/OE.392481
    [12] Liu X Y, Qian X M, Huang H H, et al. Numerical simulation of the number of return photons from sodium laser beacons excited by macro-micropulse laser [J]. Chinese Journal of Lasers, 2014, 41(6): 0613001. (in Chinese) doi:  10.3788/CJL201441.0613001
    [13] Liu J, Wang J L, Lu T Y, et al. All-solid-state 589 nm laser and the brightness of excited sodium guide star [J]. Optics and Precision Engineering, 2014, 22(12): 3199-3204. (in Chinese) doi:  10.3788/OPE.20142212.3199
    [14] Chen T J, Wang F, Li X Y, et al. Return intensity of sodium guide star based on pumping under multiple laser parameters [J]. Chinese Journal of Lasers, 2020, 47(8): 0801001. (in Chinese) doi:  10.3788/CJL202047.0801001
  • [1] 夏团结, 周卫文, 印剑飞, 刘文好, 何宇飞.  高速目标探测下脉冲激光扫描设计技术 . 红外与激光工程, 2023, 52(9): 20220916-1-20220916-9. doi: 10.3788/IRLA20220916
    [2] 陈慧敏, 马超, 齐斌, 郭鹏宇, 杨尚贤, 高丽娟, 霍健.  脉冲激光引信烟雾后向散射特性研究 . 红外与激光工程, 2020, 49(4): 0403005-0403005-7. doi: 10.3788/IRLA202049.0403005
    [3] 元志安, 王玲, 许可, 邓彬, 刘心溥, 朱家华, 马燕新.  副载波调制脉冲激光雷达水下传输特性研究 . 红外与激光工程, 2020, 49(S2): 20200185-20200185. doi: 10.3788/IRLA20200185
    [4] 朱孟真, 程勇, 陈霞, 魏靖松, 刘旭, 曹海源, 谭朝勇.  不同制式脉冲激光冲量耦合效应研究 . 红外与激光工程, 2019, 48(8): 805004-0805004(8). doi: 10.3788/IRLA201948.0805004
    [5] 赵万芹, 梅雪松, 王文君.  超短脉冲激光微孔加工(上)——理论研究 . 红外与激光工程, 2019, 48(1): 106008-0106008(9). doi: 10.3788/IRLA201948.0106008
    [6] 沈振民, 赵彤, 王云才, 郑永超, 尚卫东, 王冰洁, 李静霞.  混沌脉冲激光雷达水下目标探测 . 红外与激光工程, 2019, 48(4): 406004-0406004(7). doi: 10.3788/IRLA201948.0406004
    [7] 赵万芹, 梅雪松, 王文君.  超短脉冲激光微孔加工(下)——实验探索 . 红外与激光工程, 2019, 48(2): 242001-0242001(12). doi: 10.3788/IRLA201948.0242001
    [8] 黄国俊, 陆益敏, 程勇, 田方涛, 米朝伟, 万强.  脉冲激光沉积法制备红外光学SiC薄膜特性研究 . 红外与激光工程, 2019, 48(7): 742003-0742003(5). doi: 10.3788/IRLA201948.0742003
    [9] 石铭, 王羚, 程泓勋, 张樊.  基于激光偏振调制的全光Cs原子磁力仪研究 . 红外与激光工程, 2018, 47(9): 920001-0920001(4). doi: 10.3788/IRLA201847.0920001
    [10] 罗瑞耀, 王红岩, 宁禹, 丁枫, 万国新, 许晓军.  基于阵列激光导星的自适应光学波前探测数值仿真 . 红外与激光工程, 2018, 47(11): 1111003-1111003(9). doi: 10.3788/IRLA201847.1111003
    [11] 胡恒, 杜小平, 张朋, 渠晋.  调制函数对偏振调制激光测距精度影响分析 . 红外与激光工程, 2018, 47(10): 1006004-1006004(7). doi: 10.3788/IRLA201847.1006004
    [12] 王博, 胡雄, 闫召爱, 肖存英, 郭商勇, 程永强, 郭文杰.  中层顶准单色重力波特性的钠荧光多普勒激光雷达观测分析 . 红外与激光工程, 2017, 46(5): 506002-0506002(8). doi: 10.3788/IRLA201746.0506002
    [13] 陆益敏, 郭延龙, 黄国俊, 黎伟, 万强, 唐璜.  脉冲激光沉积低内应力多层类金刚石膜 . 红外与激光工程, 2017, 46(9): 921001-0921001(6). doi: 10.3788/IRLA201746.0921001
    [14] 颜召军, 杨朋千.  层向多层共轭自适应光学系统的模拟 . 红外与激光工程, 2016, 45(9): 918005-0918005(6). doi: 10.3788/IRLA201645.0918005
    [15] 吴常顺, 冯国英, 刘彩飞.  脉冲激光对单晶硅打孔的研究 . 红外与激光工程, 2016, 45(2): 206007-0206007(6). doi: 10.3788/IRLA201645.0206007
    [16] 程永强, 胡雄, 闫召爱, 郭商勇, 孙逸桥, 张旭.  可重部署钠激光雷达接收系统减震设计 . 红外与激光工程, 2016, 45(S1): 92-97. doi: 10.3788/IRLA201645.S130005
    [17] 许祖彦, 薄勇, 彭钦军, 张雨东, 魏凯, 薛随建, 冯麓.  激光钠导引星技术研究进展 . 红外与激光工程, 2016, 45(1): 101001-0101001(13). doi: 10.3788/IRLA201645.0101001
    [18] 张至诚, 张晓芳, 高雪, 宋杰, 王潇.  多层共轭自适应光学系统性能 . 红外与激光工程, 2016, 45(12): 1218002-1218002(5). doi: 10.3788/IRLA201645.1218002
    [19] 殷笑尘, 付彦辉.  红外/激光共孔径双模导引头光学系统设计 . 红外与激光工程, 2015, 44(2): 428-431.
    [20] 查冰婷, 张合.  单光束脉冲激光引信扫描频率和脉冲频率研究 . 红外与激光工程, 2014, 43(7): 2081-2086.
  • 加载中
图(9)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  53
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-06-02
  • 录用日期:  2022-06-06
  • 刊出日期:  2022-07-05

微秒脉冲激光钠导引星星群技术研究(特邀)

doi: 10.3788/IRLA20220321
    作者简介:

    卞奇,男,助理研究员,博士,主要从事钠信标激光及其应用技术方面的研究

    通讯作者: 薄勇,男,研究员,博士,主要从事固体激光及其频率变换技术方面的研究。
基金项目:  国家自然科学基金(62005295);国家重点研发计划(2016 YFB0402103)
  • 中图分类号: O437

摘要: 激光钠导引星被称为人造恒星,用于探测和校正光波经大气湍流引起的波前畸变,大幅度提高自适应光学望远镜的成像质量。采用单颗钠导引星探测的有效视场范围有限,通过多束黄激光分别激发大气电离层钠原子产生多颗钠导引星,能在较大视场内获得更清晰的目标成像,在精密天文观测、空间目标探测等领域具有重要应用。文中重点介绍了微秒脉冲激光钠导引星星群的产生,基于100 W级微秒脉冲激光,采用小角度精密偏振分光/并束调控的专利技术,在丽江天文台通过一台发射望远镜将四束20 W/束、重复频率kHz、脉冲宽度百微秒的钠激光发射到天空,在40"观测视场内生成四颗导引星,星群构型可调控,如线形、平行四边形、菱形和正方形等,每颗钠导引星亮度约为V波段8等星,光斑大小约3.25"。利用脉冲同步控制技术,钠导引星回波信号可以避免瑞利散射光的干扰,从而获得更高的空间分辨率。这为大口径天文望远镜多层共轭校正系统的研制提供技术参考。

English Abstract

    • 钠导引星是利用特定波长为589 nm黄激光激发距地面90~110 km高空中钠原子发出共振荧光形成,它又被称为钠信标,用来导引自适应光学系统对大气湍流扰动导致的波前畸变进行校正,使光学/红外波段望远镜的分辨率达到近衍射极限[1-3]。目前,大多数天文望远镜都采用单层共轭自适应光学技术(Single conjugate adaptive optics, SCAO),只通过一个钠导引星探测波前畸变,再由一个变形镜快速补偿[4]。然而,由于钠导引星的生成高度有限以及钠导引星和待观测目标间的夹角而引入的非等晕误差,SCAO只能在一个较小的视场范围内获得清晰成像,限制了大口径望远镜的观测能力。为了实现更大视场内的高分辨率目标成像,在1989年提出了多层共轭自适应光学技术(Multi-conjugate adaptive optics, MCAO)[5],利用多束黄激光分别激发大气电离层钠原子产生多颗钠导引星,通过交叉探测补偿方法,使望远镜突破以上限制,多个变形镜可校正沿不同方向和不同高度的畸变信息,重构出大气湍流三维波前。

      2012年,美国Gemini South天文台率先采用5颗10 W级连续波人造钠信标来补偿大气湍流的实验[6],高达80″的视场内,在近红外波段提供了近衍射极限的图像质量,成功验证了MCAO系统的优势。但在实际应用中发现,在采集钠导引星图像时受到来自低层大气的多束瑞利散射光柱影响,波前传感器上存在较大的残余噪声,成为激光导引星MCAO发展亟需解决的关键技术问题[7]。采用准连续脉冲钠导引星激光,通过时间/距离选通技术可去除瑞利散射干扰[7- 8],解决了星群系统中多光束串扰现象,从而提高自适应光学探测信噪比和整体性能。传统的纳秒、皮秒脉冲激光器具有较高的峰值功率,容易引起大气中间层钠原子的吸收饱和,从而降低回波效率;运转在微秒长脉冲机制的激光能够避免上述问题,是自适应光学系统的最佳选择。因此,欧洲8 m望远镜VLT、在建的国际30 m望远镜TMT、欧洲极大望远镜E-ELT等正在大力发展无串扰现象的微秒脉冲钠导引星星群技术。

      文中介绍了准连续微秒脉冲钠导引星星群的研究进展情况。基于一种小角度精密偏振分光/并束调控技术,将4路20 W级/束、kHz重复频率、100 μs脉冲宽度的钠激光束由一台发射望远镜射向天空,实现了四颗无瑞利散射干扰的钠导引星星群,可获得高信噪比、高精度的波前畸变信息。与配备四个发射望远镜完成四束激光投射的ESO VLT系统相比[9],这种方法提供了更高的可靠性、更好的灵活性、更低的成本和更简单的部署,为发展大型天文望远镜的多导星自适应光学系统开辟了新道路。

    • 激光钠导引星星群天空测试的总体实验布局见图1,主要包括钠信标激光系统、发射和接收望远镜系统。其中,发射望远镜由直径300 mm的主镜和直径20 mm的次镜组成,接收望远镜的有效口径为1.8 m,并在库德焦平面安装一个CCD对激光钠导引星成像,具体参数已经在之前发表的文章中描述[10]。100 W级钠激光采用了重复频率为500 Hz的两台50 W级脉冲钠激光源1和钠激光源2的时序偏振合成方案[11]。为采用一台发射望远镜发射多束激光束,设计了一种小角度精确偏振合束和分光的方法。

      图  1  激光钠导引星星群系统的实验装置(BS为光束整形器;HW为半波片;HR为高反镜;P为偏振片;QWP为四分之一波片;PD为光电检测器;OC为光学斩波器;CCD为电荷耦合器件;p为水平偏振;s为竖直偏振;Ll/Lr为与x轴呈135°/45°的线性偏振;Cl/Cr左旋圆偏振/右旋圆偏振)

      Figure 1.  Experimental configuration of multiple sodium LGS system (BS, beam shaper; HW, half-wave plate; HR, high reflection mirror; P, thin film polarizer; QWP, quarter-wave plate; PD, photo detector; OC, optical chopper; CCD, charge-coupled device; p, horizontal polarization; s, vertical polarization; Ll/Lr, linearly polarization at a 135°/45° to the x-axis; Cl/Cr, left-hand/right-hand circular polarization)

      首先,钠激光源1和钠激光源2输出激光束经各自的光束整形器BS扩束并准直为光斑大小8 mm平行光,再分别通过半波片HW-1和HW-2将其偏振态调整为竖直方向(s偏振)和水平方向(p偏振)。正交偏振的两束激光通过具有s偏振光高反、p偏振光高透特性的偏振合成器P1实现偏振非相干合成,合成效率高达96%,合成后的光束有一定间隔,光束质量保持不变;与相干合成方法相比,该技术具有结构简单、稳定好、效率高的优势,光束间互不影响,且整个系统无需复杂的相位控制机制。半波片HW1/HW2和偏振器P1组合作为功率衰减器来分别控制两路激光束的出射功率,而剩余光束则注入到通水冷却的光收集器内。将半波片HW3放置在偏振器P1的后面,每一束激光经过HW3后偏振方向将发生改变,再由偏振分束器P2分成两束;其中,垂直分量被P2反射,水平分量则透过P2后,经高反镜HR2和HR3反射后再次透过P2,可以通过旋转HW3主轴与x轴之间的角度来调节光束间的能量比。最后,四束直径为8 mm的部分重叠黄色激光束被高反镜HR4反射注入到口径20 mm的次镜,然后被主镜准直成300 mm发射到天空。采用压电陶瓷促动器精确改变高反镜HR1、HR2、HR3和HR4的放置角度和位置,优化四束激光束光轴间的夹角和分开距离,以满足不同的应用需求。当然,如果使用更高功率的钠信标激光器,采用n个半波片和偏振器的组合,可以在有限空间内获得2n束激光束的分光。

      为了进一步提升钠导引星的回波流量,在发射望远镜前插入一个1/4波片QWP,将s偏振光和p偏振光调整为圆偏振态,以获得钠原子高效率抽运。采用多通道的脉冲同步触发和延时器分别控制钠激光器1和激光器2,通过放置在高反镜HR2后的光电探测器PD记录合成光束的脉冲特性,以精密优化两台激光器的触发时间。此外,在CCD前安装有一个特制的光学斩波器OC,通过对所监测到的激光脉冲特征和所探测到的钠导引星图像的闭环反馈,来精确控制OC的工作状态,只允许钠导引星回波信号通过,遮挡瑞利散射光。

    • 钠信标激光器在最佳状态下工作,输出功率最高,波长锁定在钠D2a吸收线。测得10 min钠导引星激光输出平均功率为106 W,功率波动为±2.1%,如图2所示。图3为采用WS-7波长计监测输出激光中心波长为589.15913 nm,稳定性优于±0.23 pm,线宽小于0.3 pm,对应频率稳定性±0.2 GHz和线宽0.26 GHz。图4为采用光电探头监测到的589 nm激光的脉冲轨迹。两台钠信标激光器分别运转在500 Hz,单脉冲宽度约100 μs,如图4(a)和(b)所示,钠信标激光器1相对于钠信标激光器2的触发时间延迟1000 μs;图4(c)给出了合束激光的脉冲序列结果,可以看到重复频率为1 kHz,相邻的两个激光脉冲是独立的,呈现出正交的s/p偏振态。同时,百微秒脉冲宽度可以更高效地激发钠原子,kHz的高重复频率也有利于校正大气的高阶像差。

      图  2  钠信标激光器输出平均功率测量结果

      Figure 2.  Measurement results of average output power of sodium laser

      图  3  钠信标激光器的波长与线宽测量结果

      Figure 3.  Measurement results of sodium laser wavelength and linewidth

      图  4  脉冲序列测量(a) s偏振激光1; (b) p偏振激光2; (c) 交替s/p偏振合束激光

      Figure 4.  Pulse traces measurement of (a) s-polarized laser-1; (b) p-polarized laser-2; (c) Combined laser with alternate s/p polarization

    • 2021年1月,中国科学院理化所与光电所、国家天文台合作,于云南丽江1.8 m望远镜上进行激光钠导引星星群实验研究。如图5所示,发射望远镜安装在接收望远镜的一侧,两台50 W级脉冲钠激光器、偏振合束和分光系统及光电信号控制系统固定在发射望远镜附近的殷钢底板上。除了较长的光束整形部分外,偏振合束和分光部分非常紧凑,所占面积仅为0.07 m2 (长0.35 m,宽0.2 m)。测量望远镜的透过率约89%,激光经过整形透镜、若干高反镜及偏振合成/分光过程传输效率约91%,故从光束整形器到发射望远镜出射窗口的功率损耗约20%。

      图  5  两台钠信标激光器安装在1.8 m望远镜上

      Figure 5.  Photograph of two sodium laser facility on 1.8 m telescope

      在地面时,由于四束黄色光束之间的距离和角度较小,看似一束光斑直径较大的激光束,但发射到大气中间钠层后四束激光完全能分开,并分别激发钠原子获得高亮度的钠导引星。图6为CCD 捕捉到的激光钠导引星成像,在一个40″的正方形星座上有一个独立的4颗星点分布,通过控制压电陶瓷促动器调节分光反射镜与x轴的夹角,可使单颗导星沿水平方向分开,调节与y轴的夹角,可使单颗导星沿竖直方向分开,在两个方向上不同角度的组合使得星群构型可变为线形、平行四边形和菱形等。如果使用一个更大口径的发射望远镜,可实现几角分的更大观测视场。实验结果表明,采用小角度精确偏振合束和分光的方法为多导星星群的研制提供了一种新方法,能够只通过一个发射望远镜来实现多导引星星群。

      图  6  不同形状的激光钠导引星星群和瑞利散射图像

      Figure 6.  Images of sodium LGS asterism and Rayleigh scattering with different configurations

      考虑到成像系统像差、激光光束质量及大气视宁度的限制,通过调焦使激光束在天空中产生的钠导引星最小光斑尺寸约为3.25″,如图7所示,拟合曲线表明钠层处的导引星光斑强度呈高斯分布。根据理论分析和实验研究,相比于线性偏振激光,圆偏振光激发钠原子时会形成光学泵浦效应,周期性地将钠原子往更高的磁量子数泵浦,极大地提高原子使用率,从而提高激光器的耦合效率和回光流量[12]。然而,偏振时序合成技术使发射的脉冲激光呈交替的s/p偏振态,通过调节四分之一波片的角度无法产生一致的左旋圆偏振光或右旋圆偏振光。测量了正交的线偏振态和正交的圆偏振态情况下,单颗激光钠导引星光子数流量随发射激光功率的变化,结果如图8所示,在最大输出功率下,正交圆偏振光比正交线性偏振光对钠原子的激发效率提高了约45%,这与之前左旋/右旋圆偏振光测试结果符合的很好[13-14],表明正交圆偏振激光与圆偏振光一样可以高效抽运钠原子。根据回光流量和天体星等之间的关系,估算单颗激光导引星亮度约为V波段8等星。

      图  7  单颗激光钠导星光斑大小(块:测量结果;线:高斯拟合)

      Figure 7.  Spot size of single sodium LGS(Squares: Experimental results; Solid line: Gaussian fitting)

      图  8  正交圆偏振和正交线偏振的钠导引星回波强度随激光功率的变化

      Figure 8.  LGS flux for orthogonally circular and orthogonally linear polarization versus laser power

      图6可以看出,在激光钠导引星星群附近具有多束较高亮度的瑞利散射光柱,其强度比钠导引星信号强约三个量级,这大大降低了探测信噪比,成为多层共轭自适应光学系统的一个关键问题。与连续波模式激光相比,准连续脉冲激光可以利用由生成高度不同导致的回波时间差来消除瑞利散射光。根据钠激光器的重复频率1 kHz和脉冲宽度100 μs,理论模拟的瑞利光与钠导引星回波信号如图9所示。可以看到,由第一个激光脉冲所产生的第一个瑞利散射光从0~433 μs返回到地面,所产生的第一个钠导引星回波时间为533~833 μs;由第二个激光脉冲所产生的第二个瑞利散射光从1000~1433 μs返回到地面,在第二个钠导引星回波时间(1533~1833 μs)之前和第一个钠导引星回波时间(533~833 μs)之后,时间上没有重叠。因此,通过控制斩波器运转与探测到的钠导星回波同步,可阻断瑞利散射光进入到CCD,又不影响接收钠导星的光子数流量,如图9中插图所示,探测信噪比显著增强三四倍,便于后续自适应光学系统闭环工作。

      图  9  模拟的瑞利和激光钠导引星回波信号(插图:无瑞利干扰的激光钠导引星图像)

      Figure 9.  Simulated echo of Rayleigh and sodium LGS(Inset: Sodium LGS image without Rayleigh)

    • 随着地基望远镜的口径越造越大,为满足高分辨率、高灵敏度、大视场的天文观测需求,发展激光钠导引星星群技术是关键。文中采用一种小角度精密偏振分光/并束调控方法,在丽江天文台1.8 m望远镜上,通过一台发射望远镜产生了微秒脉冲激光钠导引星星群,在40″观测视场内实现了构型可调控的四颗导引星,如线形、平行四边形、菱形、正方形等,每颗星亮度约8等星,光斑大小约3.25″。实验中,将激光的正交线性偏振态转化为正交圆偏振态后,由于光学泵浦作用,激发效率提高了1.5倍左右。此外,通过脉冲同步控制技术成功去除了瑞利散射对钠导引星光斑的污染,可获得高信噪比波前探测,提高对观测目标的成像质量,这一结果将有助于推动大型地基光学望远镜中MCAO技术的发展。

参考文献 (14)

目录

    /

    返回文章
    返回