留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拉曼信号分段重构的分布式光纤测温空间分辨率提升研究

李硕 王纪强 高忠国 高建新 侯泽民 姜龙 侯墨语

李硕, 王纪强, 高忠国, 高建新, 侯泽民, 姜龙, 侯墨语. 基于拉曼信号分段重构的分布式光纤测温空间分辨率提升研究[J]. 红外与激光工程, 2023, 52(10): 20230076. doi: 10.3788/IRLA20230076
引用本文: 李硕, 王纪强, 高忠国, 高建新, 侯泽民, 姜龙, 侯墨语. 基于拉曼信号分段重构的分布式光纤测温空间分辨率提升研究[J]. 红外与激光工程, 2023, 52(10): 20230076. doi: 10.3788/IRLA20230076
Li Shuo, Wang Jiqiang, Gao Zhongguo, Gao Jianxin, Hou Zemin, Jiang Long, Hou Moyu. Research on spatial resolution improvement of distributed optical fiber temperature measurement based on Raman signal segmentation and reconstruction[J]. Infrared and Laser Engineering, 2023, 52(10): 20230076. doi: 10.3788/IRLA20230076
Citation: Li Shuo, Wang Jiqiang, Gao Zhongguo, Gao Jianxin, Hou Zemin, Jiang Long, Hou Moyu. Research on spatial resolution improvement of distributed optical fiber temperature measurement based on Raman signal segmentation and reconstruction[J]. Infrared and Laser Engineering, 2023, 52(10): 20230076. doi: 10.3788/IRLA20230076

基于拉曼信号分段重构的分布式光纤测温空间分辨率提升研究

doi: 10.3788/IRLA20230076
基金项目: 国家重点研发计划(2022YFB3207602);山东省自然基金重点项目(ZR2020KC012)
详细信息
    作者简介:

    李硕,男,硕士生,主要从事分布式光纤测温方面的研究

    王纪强,男,研究员,博士,主要从事光纤传感技术及其在油气管道、智能电网、智慧矿山等行业的应用研究

    通讯作者: 侯墨语,男,助理研究员,硕士,主要从事分布式光纤测温方面的研究。
  • 中图分类号: TN29

Research on spatial resolution improvement of distributed optical fiber temperature measurement based on Raman signal segmentation and reconstruction

Funds: National Key Research and Development Program of China (2022YFB3207602); Shandong Provincial Natural Fund Key Projects (ZR2020KC012)
  • 摘要: 激光器脉宽是分布式光纤测温系统空间分辨率的主要影响因素之一,在光脉冲覆盖待测区域的情况下,系统无法准确解调出待测区域的准确温度。提出了一种拉曼信号分段与重构方法,通过分析光脉冲在待测区域处的信号特征,得出了激光脉宽对温度偏差的影响关系,并根据此关系对不同温度区域原始拉曼信号进行分段,借助待测区域长度、已知温度和待测温度下的拉曼光强差重构待测区域处的拉曼信号强度,利用重构后的拉曼信号进行温度解调,使系统空间分辨率、测温精度大幅提升。使用20 ns脉宽的光源(理论空间分辨率可达到2 m)、0.72 m测试光纤进行测试,结果表明,在90 ℃测试温度下,温度误差从33.9 ℃减小至5.8 ℃,系统空间分辨率由2.27 m提升至1.13 m。
  • 图  1  光脉冲传输过程

    Figure  1.  Optical pulse transmission process

    图  2  系统结构图

    Figure  2.  System structure diagram

    图  3  (a)在激光脉宽20 ns下的Ratio曲线 ;(b)在激光脉宽50 ns下的Ratio曲线

    Figure  3.  (a) Ratio curve at a laser pulse width of 20 ns; (b) Ratio curve at a laser pulse width of 50 ns

    图  4  92.1 ℃下的测温曲线

    Figure  4.  Temperature measurement curve at 92.1 ℃

    图  5  传统解调方法与拉曼信号分段与重构方法温度误差对比

    Figure  5.  Temperature error between conventional demodulation method and Raman signal segmentation and reconstruction method

    表  1  传统温度解调与重构后温度解调对比

    Table  1.   Comparison of traditional temperature demodulation and reconfigured temperature demodulation

    Actual temperature/℃Traditional demodulation/℃Raman signal reconstruction/℃
    40.731.039.8
    50.736.148.5
    61.641.758.2
    71.846.967.1
    81.952.777.2
    92.158.386.8
    下载: 导出CSV
  • [1] 何祖源, 刘银萍, 马麟, 等. 小芯径多模光纤拉曼分布式温度传感器[J]. 红外与激光工程, 2019, 48(04): 285-291. doi:  10.3788/IRLA201948.0422002.

    He Zuyuan, Liu Yinping, Ma Lin, et al. Raman distributed temperature sensor using multimode fiber with reduced core size [J]. Infrared and Laser Engineering, 2019, 48(4): 0422002. (in Chinese) doi:  10.3788/IRLA201948.0422002
    [2] 许扬, 李健, 张明江. 拉曼分布式光纤温度传感仪的研究进展[J]. 应用科学学报, 2021, 39(05): 713-732. doi:  10.3969/j.issn.0255-8297.2021.05.002

    Xu Yang, Li Jian, Zhang Mingjiang. Research progress of Raman distributed optical fiber temperature sensor [J]. Journal of Applied Sciences, 2021, 39(5): 713-732. (in Chinese) doi:  10.3969/j.issn.0255-8297.2021.05.002
    [3] 廖光萌, 何建新, 朱玉琴等. 光纤光栅传感器及其应用[J]. 装备环境工程, 2022, 19(11): 142-149.

    Liao Guangmeng, He Jianxin, Zhu Yuqin, et al. Fiber grating sensor and application [J]. Equipment Environmental Engineering, 2022, 19(11): 142-149. (in Chinese)
    [4] 杨甜甜, 郭涛, 陈展等. 温度传感器的应用研究[J]. 内江科技, 2020, 41(3): 38-42.
    [5] 张利军. 工业热电偶测温原理及故障分析[J]. , 2022, 20(02): 42-44. doi: 10.16661/j.cnki.1672-3791.2112-5042-6739.

    Zhang Lijun. Temperature measurement principle and fault analysis of industrial thermocouple [J]. Science & Technology Information, 2022, 20(2): 42-44. (in Chinese)
    [6] Xu Yang, Li Jian, Zhang Mingjiang, et al. Pipeline leak detection using Raman distributed fiber sensor with dynamic threshold identification method [J]. IEEE Sensors Journal, 2020, 20(14): 7870-7877. doi:  10.1109/JSEN.2020.2980366
    [7] 李震, 冷先伦, 殷秋雨. 基于分布式光纤监测的隧道火灾温度分布特征研究[J]. 现代隧道技术, 2022, 59(06): 132-139. doi:  10.13807/j.cnki.mtt.2022.06.015.

    Li Zhen, Leng Xianlun, Yin Qiuyu. Research on the temperature distribution characteristics of tunnel fire based on distributed optical fiber monitoring [J]. Modern Tunnelling Technology, 2022, 59(6): 132-139. (in Chinese) doi:  10.13807/j.cnki.mtt.2022.06.015
    [8] 刘翔. 分布式光纤测温系统在核电厂的应用实践[J]. 电子技术应用, 2022(S1): 38-43. doi:  10.16157/j.issn.0258-7998.2022.S1.009.

    Liu Xiang. Applications of distributed optical fiber temperature sensor system in nuclear power plants [J]. Application of Electronic Technique, 2022(S1): 38-43. (in Chinese) doi:  10.16157/j.issn.0258-7998.2022.S1.009
    [9] 周铂承, 樊昕昱, 何祖源. 基于强度调制型啁啾脉冲压缩法的分布式喇曼温度传感器[J]. 光通信技术, 2021, 45(10): 30-33. doi: 10.13921/j.cnki.issn1002

    Zhou Bocheng, Fan Xinyu, He Zuyuan. Raman distributed temperature sensor based on intensity modulated chirped pulse compression [J]. Optical Communication Technology, 2021, 45(10): 30-33. (in Chinese) doi:  10.13921/j.cnki.issn1002-5561.2021.10.007
    [10] Soto M A, Ramírez J A, Thévenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration [J]. Nature Communications, 2016, 7: 10870. doi:  10.1038/ncomms10870
    [11] Bazzo J P, Pipa D R, Martelli C, et al. Improving spatial resolution of Raman DTS using total variation deconvolution [J]. IEEE Sensors Journal, 2016, 16(11): 4425-4430. doi:  10.1109/JSEN.2016.2539279
    [12] Silva M S P E, Alves H P, Nascimento J F, et al. Impact of pulse width on the sensitivity and range of a Raman-based distributed fiber-optic temperature sensor [J]. Journal of Microwaves, Optoelectronics and Electromagnetic Applica-tions, 2018, 17(4): 539-551. doi:  10.1590/2179-10742018v17i41542
    [13] 鲁佳慧, 万成功, 金恺, 等. 分布式光纤测温系统精度和实时性优化研究[J]. 激光杂志, 2023, 44(01): 62-67. doi:  10.14016/j.cnki.jgzz.2023.01.062.

    Lu Jiahui, Wan Chenggong, Jin Kai, et al. Research on optimizing accuracy and real-time performance of distributed optical fiber temperature sensor system [J]. Laser Journal, 2023, 44(1): 62-67. (in Chinese) doi:  10.14016/j.cnki.jgzz.2023.01.062
    [14] 张汝山, 吴硕, 涂勤昌, 等. 高空间分辨率分布式光纤测温系统的设计及应用[J]. 光学仪器, 2015, 37(01): 79-82. doi:  10.3969/j.issn.1005-5630.2015.01.017

    Zhang Rushan, Wu Shuo, Tu Qinchang, et al. Design and application of high spatial resolution distributed temperature sensing system [J]. Optical Instruments, 2015, 37(1): 79-82. (in Chinese) doi:  10.3969/j.issn.1005-5630.2015.01.017
    [15] 孙苗, 杨爽, 汤玉泉, 等. 基于拉曼散射光动态校准的分布式光纤温度传感系统[J]. 物理学报, 2022, 71(20): 31-37. doi:  10.7498/aps.71.20220611

    Sun Miao, Yang Shuang, Tang Yuquan, et al. Distributed fiber optic temperature sensor based on dynamic calibration of Raman Stokes [J]. Acta Physica Sinica, 2022, 71(20): 200701. (in Chinese) doi:  10.7498/aps.71.20220611
    [16] 侯培国. 分布式光纤温度传感系统的理论与实验研究[D]. 燕山大学, 2003.

    Hou Peiguo. Theory and experiment research on fiber optic distributed temperature sensor system[D]. Qinhuangdao: Yanshan University, 2003. (in Chinese)
    [17] 王玎睿, 邓霄, 张均, 等. 面向冰盖剖面的高空间分辨率分布式光纤测温系统设计[J]. 应用光学, 2021, 42(05): 941-948. doi:  10.5768/JAO202142.0508003.

    Wang Dingrui, Deng Xiao, Zhang Jun, et al. High spatial resolution distributed optical fiber temperature measurement system for ice cover profile [J]. Applied Optics, 2021, 42(5): 941-948. (in Chinese) doi:  10.5768/JAO202142.0508003
    [18] Wang Yanping, Sun Xiaohong, Qi Xue, et al. The study of the Raman-based optical fiber-folded distributed temperature sensing system with simplex code [J]. Optics Communications, 2018, 420: 200-204. doi:  10.1016/j.optcom.2018.03.046
    [19] Wang Honghui, Wang Xiang, Cheng Yi, et al. Research on noise reduction method of RDTS using D-SVD [J]. Optical Fiber Technology, 2019, 48: 151-158. doi:  10.1016/j.yofte.2018.12.030
  • [1] 白振旭, 郝鑫, 郑浩, 陈晖, 齐瑶瑶, 丁洁, 颜秉政, 崔璨, 王雨雷, 吕志伟.  高功率自由空间拉曼放大技术研究进展(特邀) . 红外与激光工程, 2023, 52(8): 20230337-1-20230337-13. doi: 10.3788/IRLA20230337
    [2] 潘聪, 叶宇, 顾伯忠, 帅雨林.  2.5 m大视场高分辨率望远镜消光筒温度控制 . 红外与激光工程, 2023, 52(9): 20230024-1-20230024-8. doi: 10.3788/IRLA20230024
    [3] 王敬雯, 尹子恺, 尹飞飞, 戴一堂.  高分辨率任意可重构微波光子滤波器 . 红外与激光工程, 2023, 52(10): 20230015-1-20230015-9. doi: 10.3788/IRLA20230015
    [4] 李阳, 范晨晨, 郝修路, 马小雅, 姚天甫, 许将明, 曾祥龙, 周朴.  高功率涡旋拉曼光纤激光器 . 红外与激光工程, 2023, 52(6): 20230292-1-20230292-6. doi: 10.3788/IRLA20230292
    [5] 鲍玉朔, 黄海涛, 陈海伟, 王飞, 李子涵.  低频移拉曼模式多阶级联的1.7 μm激光器 . 红外与激光工程, 2022, 51(7): 20210507-1-20210507-5. doi: 10.3788/IRLA20210507
    [6] 于淼, 张耀鲁, 徐泽辰, 何禹潼.  基于MEEMD-HHT的分布式光纤振动传感系统信号特征提取方法 . 红外与激光工程, 2021, 50(7): 20210223-1-20210223-12. doi: 10.3788/IRLA20210223
    [7] 张静, 段延敏, 张栋, 张永昶, 王鸿雁, 朱海永.  声光调Q内腔式Nd:YAG/RTP级联拉曼激光特性 . 红外与激光工程, 2019, 48(6): 606006-0606006(5). doi: 10.3788/IRLA201948.0606006
    [8] 何祖源, 刘银萍, 马麟, 杨晨, 童维军.  小芯径多模光纤拉曼分布式温度传感器 . 红外与激光工程, 2019, 48(4): 422002-0422002(7). doi: 10.3788/IRLA201948.0422002
    [9] 张春玲, 王凯君, 庞庆.  采用SiPM探测三硝基甲苯的时间分辨拉曼光谱 . 红外与激光工程, 2018, 47(10): 1020004-1020004(5). doi: 10.3788/IRLA201847.1020004
    [10] 余骁, 闵敏, 张兴赢, 孟晓阳, 邓小波.  典型滤波器对星载高光谱分辨率激光雷达532 nm通道回波信号的影响 . 红外与激光工程, 2018, 47(12): 1230008-1230008(10). doi: 10.3788/IRLA201847.1230008
    [11] 顾礼, 宗方轲, 李翔, 周军兰, 杨勤劳, 郭宝平.  用于激光聚变的X射线条纹相机阴极检测系统 . 红外与激光工程, 2018, 47(8): 817002-0817002(5). doi: 10.3788/IRLA201847.0817002
    [12] 于学丽, 丁双红, 贾海旭, 辛磊.  主动调Q腔内和频拉曼激光器的数值模拟 . 红外与激光工程, 2017, 46(9): 906001-0906001(7). doi: 10.3788/IRLA201746.0906001
    [13] 尚震, 谢晨波, 王邦新, 谭敏, 钟志庆, 王珍珠, 刘东, 王英俭.  纯转动拉曼激光雷达探测北京地区近地面大气温度 . 红外与激光工程, 2017, 46(10): 1030001-1030001(8). doi: 10.3788/IRLA201764.1030001
    [14] 余乐文, 张达.  采空区三维激光扫描空间分辨率增强方法 . 红外与激光工程, 2017, 46(10): 1006002-1006002(6). doi: 10.3788/IRLA201760.1006002
    [15] 梁生, 刘腾飞, 盛新志, 娄淑琴, 张克.  基于空间域差分的φ-OTDR光纤分布式扰动传感器定位方法研究 . 红外与激光工程, 2016, 45(6): 622005-0622005(5). doi: 10.3788/IRLA201645.0622005
    [16] 汪洋, 刘大福, 徐勤飞, 王妮丽, 李雪, 龚海梅.  不同结构红外光导探测器组件光串分析 . 红外与激光工程, 2016, 45(4): 404001-0404001(5). doi: 10.3788/IRLA201645.0404001
    [17] 李述涛, 董渊, 金光勇, 吕彦飞.  连续腔内倍频拉曼激光器的归一化理论解析 . 红外与激光工程, 2015, 44(1): 71-75.
    [18] 闫顺生.  提高拉曼探测气溶胶消光系数精度的玻-温模式 . 红外与激光工程, 2014, 43(9): 3015-3019.
    [19] 刘涛, 张文平, 陈慧芳, 冯桂兰, 刘月明.  卡尔曼滤波在分布式拉曼光纤温度传感系统去噪中的应用 . 红外与激光工程, 2014, 43(5): 1643-1647.
    [20] 陈艳菲, 王利恒, 王洪伟.  估算红外成像作用空间分辨率的新方法 . 红外与激光工程, 2014, 43(1): 33-38.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  29
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-18
  • 修回日期:  2023-03-18
  • 刊出日期:  2023-10-24

基于拉曼信号分段重构的分布式光纤测温空间分辨率提升研究

doi: 10.3788/IRLA20230076
    作者简介:

    李硕,男,硕士生,主要从事分布式光纤测温方面的研究

    王纪强,男,研究员,博士,主要从事光纤传感技术及其在油气管道、智能电网、智慧矿山等行业的应用研究

    通讯作者: 侯墨语,男,助理研究员,硕士,主要从事分布式光纤测温方面的研究。
基金项目:  国家重点研发计划(2022YFB3207602);山东省自然基金重点项目(ZR2020KC012)
  • 中图分类号: TN29

摘要: 激光器脉宽是分布式光纤测温系统空间分辨率的主要影响因素之一,在光脉冲覆盖待测区域的情况下,系统无法准确解调出待测区域的准确温度。提出了一种拉曼信号分段与重构方法,通过分析光脉冲在待测区域处的信号特征,得出了激光脉宽对温度偏差的影响关系,并根据此关系对不同温度区域原始拉曼信号进行分段,借助待测区域长度、已知温度和待测温度下的拉曼光强差重构待测区域处的拉曼信号强度,利用重构后的拉曼信号进行温度解调,使系统空间分辨率、测温精度大幅提升。使用20 ns脉宽的光源(理论空间分辨率可达到2 m)、0.72 m测试光纤进行测试,结果表明,在90 ℃测试温度下,温度误差从33.9 ℃减小至5.8 ℃,系统空间分辨率由2.27 m提升至1.13 m。

English Abstract

    • 分布式光纤拉曼测温系统利用光纤中传输的背向拉曼散射信号实现空间温度场的实时监测[1-2],相比于传统测温方法[3-5],该技术不仅能够实现长距离温度监测,还具有抗电磁干扰、响应速度快、易于铺设等优点,在各领域有着广泛应用[6-9]。目前分布式光纤测温系统受激光脉冲宽度等因素的影响,空间分辨率指标无法得到有效提升[10]。传统方法是通过压缩入射激光脉冲宽度等方法来提高系统空间分辨率,但激光脉冲宽度不能无限压缩,且随着脉冲宽度压缩,系统信噪比也随之变差,测温精度难以保证[11-12],限制了实际应用效果和应用范围。

      文中对高温区域处的原始拉曼信号进行分析,根据所在温度区域的不同对拉曼信号进行了分段,去除分段中已知温度段的信号,以待测温度段信号作为增益来重构拉曼信号,该方法通过消除已知温度段信号串扰来突破激光脉宽对分布式光纤测温系统空间分辨率的限制,提高测温精度和空间分辨率。

    • 分布式光纤拉曼测温系统根据自发背向拉曼散射产生的Stokes光和anti-Stokes光解析光纤温度信息,其中anti-Stokes光对温度敏感作为信号光,Stokes光对光敏感度低可作为参照光,利用anti-Stokes光与Stokes光比值消除激光器光功率波动等因素[13],公式(1)为温度解调公式:

      $$ \frac{1}{T}=\frac{1}{{T}_{0}}-\frac{k}{h\mathrm{\Delta }\nu }\left[\mathrm{ln}\frac{{P}_{as}\left(T\right)/{P}_{{s}}\left(T\right)}{{P}_{as}\left({T}_{0}\right)/{P}_{{s}}\left({T}_{0}\right)}\right] $$ (1)

      式中:$ {P}_{as} $为anti-Stokes光功率;$ {P}_{s} $为Stokes光功率;$ {T}_{0} $为已知温度;$ T $为待测温度; $ k $为玻耳兹曼常数; $ h $为普朗克常数;$ \mathrm{\Delta }\nu $为拉曼频移量。由于系统采集的光强值是一段背向拉曼信号的集合,因此当高温区域处光纤长度小于该集合长度时,系统将无法准确解调该区域的温度[14]

    • 拉曼信号分段与重构是通过分析高温区域拉曼信号特征,根据温度梯度将信号分为已知温度段和待测温度段,根据已知温度段与待测温度段的拉曼信号光强差重构高温区域信号。首先要确定待测温度区域的长度,由于Stokes光和anti-Stokes光对温度变化展现的特性一致,只是敏感度存在区别,且短距离内两路光的传播速度差异可以忽略,为了方便,将Stokes信号和anti-Stokes信号统称为拉曼信号。图1为光脉冲传输过程示意图,将一段长为$ L $的测试光纤放入高温区域,其余光纤置于室温下,称为非测试光纤。在脉冲光到达测试光纤之前,光纤温度一致,拉曼信号强度随光纤长度呈指数衰减[15];在脉冲光到达测试光纤时,受高温区域影响,拉曼信号开始上升,$ {t}_{i} $时刻脉冲光完全覆盖测试光纤;在$ {t}_{i} $~$ {t}_{k} $时刻之间,脉冲光移动距离极短,拉曼信号强度可看作一致;$ {t}_{k} $时刻过后,脉冲光开始离开测试光纤,其拉曼信号下降速率受测试光纤与非测试光纤温差影响;$ {t}_{n} $时刻之后,拉曼信号又按指数函数均匀衰减。

      图  1  光脉冲传输过程

      Figure 1.  Optical pulse transmission process

      因此,当激光脉宽为系统空间分辨率的主要制约因素时,可将空间分辨率与测温精度关系分两种情况讨论,当待测区域处测试光纤长度大于等于激光脉冲宽度时,系统测温精度主要与信号信噪比有关。当待测区域处测试光纤长度小于激光脉冲宽度时,测温精度主要与激光脉冲宽度有关,随着激光脉宽的增加,系统测量温度值逐渐偏离待测区域真实温度值,该理论为空间分辨率受限时,测温精度变差的主要原因。其中该两种情况中受高温区影响的拉曼信号长度$ l $、脉冲宽度$ \delta $和测试光纤长度$ L $关系均如公式(2)所示:

      $$ L=l-\frac{\delta c}{2n} $$ (2)

      式中:$ c $为光速;$ n $为光在光纤内的折射率。确定测试光纤长度$ L $后即可对该区域拉曼信号进行分段,这里只讨论测试光纤长度$ L $小于激光脉宽$ \delta $的情况。如图1所示,$ {t}_{i} $时刻光脉冲所在位置,在$ {t}_{i} $~$ {t}_{k} $时刻之间选取任意位置如$ {t}_{j} $时刻光脉冲所在位置,对此刻的拉曼光强值进行分段,如公式(3)所示:

      $$ {P}_{{t}_{j}}={\int }_{{L}_{1}}^{{L}_{2}}P\left({T}_{s}\right){\rm{d}}l+{\int }_{{L}_{2}}^{{L}_{3}}P\left(T\right){\rm{d}}l+{\int }_{{L}_{3}}^{{L}_{4}}P\left({T}_{s}\right){\rm{d}}l $$ (3)

      式中:$ {L}_{1} $为${t}_{{i}}$时刻光脉冲的起始位置;$ {L}_{2} $为高温区域的起始位置;$ {L}_{3} $为高温区域的结束位置;$ {L}_{4} $为光脉冲的结束位置;$ {L}_{1} $~$ {L}_{2} $、$ {L}_{3} $~$ {L}_{4} $为已知温度段;$ {L}_{2} $~$ {L}_{3} $为待测温度段;$ P $为拉曼光功率;$ T $为高温区域的温度;$ {T}_{s} $为高温区域周围的温度。

      当满足高温区域两旁温度相等都为$ {T}_{s} $时,可拟合出高温区域位置处在$ {T}_{s} $温度下的拉曼强度值,由于是在短距离下,可使用$ {t}_{1} $时刻拉曼信号强度值与$ {t}_{n} $时刻拉曼信号强度值的平均值作为该位置的拉曼强度近似值:

      $$ {P}_{{t}_{{j}}}'=\frac{{P}_{{t}_{1}}+{P}_{{t}_{n}}}{2}={\int }_{{L}_{1}}^{{L}_{2}}P\left({T}_{s}\right){\rm{d}}l+{\int }_{{L}_{2}}^{{L}_{3}}P\left({T}_{s}\right){\rm{d}}l+{\int }_{{L}_{3}}^{{L}_{4}}P\left({T}_{s}\right){\rm{d}}l $$ (4)

      式中:${P}_{{t}_{{j}}}'$为高温区域位置处在${T}_{{s}}$温度下的拉曼强度值;$ {P}_{{t}_{1}} $为$ {t}_{1} $时刻采集到的拉曼光强值;$ {P}_{{t}_{n}} $为$ {t}_{n} $时刻时采集到的拉曼光强值。

      那么公式(3)和(4)的差值就为在长度$ L $下,温度为$ T $和$ {T}_{s} $所激发的拉曼光强差:

      $$ {P}_{{t}_{{j}}}-{P}_{{t}_{{j}}}'={\int }_{{L}_{2}}^{{L}_{3}}\left[P\left(T\right)-P\left({T}_{s}\right)\right]{\rm{d}}l $$ (5)

      进一步求出在脉宽尺度$ \delta $下,温度为$ T $和${T}_{{s}}$所激发的拉曼光强差:

      $$ {\int }_{{L}_{1}}^{{L}_{4}}\left[P\left(T\right)-P\left({T}_{s}\right)\right]{\rm{d}}l=\frac{\delta c}{2nL}{\int }_{{L}_{2}}^{{L}_{3}}\left[P\left(T\right)-P\left({T}_{s}\right)\right]{\rm{d}}l $$ (6)

      重构温度为$ T $下的拉曼信号,包含温度为$ {T}_{s} $时的拉曼光强和温度为$ T $和$ {T}_{s} $所激发的拉曼光强差:

      $$ {P}_{{t}_{{j}}}\left(T\right)={P}_{{t}_{{j}}}'+{\int }_{{L}_{1}}^{{L}_{4}}\left[P\left(T\right)-P\left({T}_{s}\right)\right]{\rm{d}}l $$ (7)

      将采集的Stokes和anti-Stokes强度值分别用公式(3)~(7)进行修正,将修正后的拉曼信号代入公式(8)进行温度解调,得:

      $$ \frac{1}{T}=\frac{1}{{T}_{s}}-\frac{k}{h\mathrm{\Delta }\nu }\left[\mathrm{ln}\frac{{P}_{as{t}_{{j}}}\left(T\right)/{P}_{{s}{t}_{{j}}}\left(T\right)}{{P}_{{ast}_{{j}}}'/{P}_{{st}_{{j}}}'}\right] $$ (8)

      式中:${P}_{as{t}_{{j}}}\left(T\right)$、${P}_{{s}{t}_{{j}}}\left(T\right)$分别为修正后的Stokes和anti-Stokes值;${P}_{{ast}_{{j}}}'$、${P}_{{st}_{\mathrm{j}}}'$为公式(2)中拟合的Stokes和anti-Stokes值。该方法去除了拉曼信号集合中的已知温度段信号串扰,提高了空间分辨率和测温精度。

    • 为了验证拉曼信号分段与重构后的温度修正效果,搭建了实验测试平台,如图2所示。该平台由脉冲激光器、波分复用器(Wavelength Division Multiple-xing, WDM)、光电探测器(Avalanche Photo Diode, APD)、数据采集卡(Data Acquisition Card, DAC)、传感光纤、智能恒温槽(Intelligent Thermostat Tank)组成。

      图  2  系统结构图

      Figure 2.  System structure diagram

    • 用两组脉冲宽度来验证公式(2)高温区域长度检测方法的实际效果,实验中取14圈周长为0.24 m的测试光纤放入智能恒温槽,温度设定为80.0 ℃,其余光纤放置在室温(21.0 ℃)下,智能恒温槽内光纤长度即为高温区域长度。第一组实验将激光器脉宽设定为20 ns,第二组实验将激光器脉宽设定为50 ns。如图3(a)、(b)所示,Ratio为采集的anti-Stokes与Stokes的比值。受高温区域影响的拉曼信号长度为光脉冲刚接触高温区域至刚好完全离开高温区域,如图1中即为$ {t}_{1} $~$ {t}_{n} $时刻之间对应的距离。其中图3(a)受高温区域影响的拉曼信号长度为5.52 m,求得高温区域长度为3.52 m,误差为0.16 m;图3(b)受高温区域影响的拉曼信号长度为8.68 m,求得高温区域长度为3.68 m,误差为0.32 m,可以看出该方法可有效地检测出高温区域的长度。

      图  3  (a)在激光脉宽20 ns下的Ratio曲线 ;(b)在激光脉宽50 ns下的Ratio曲线

      Figure 3.  (a) Ratio curve at a laser pulse width of 20 ns; (b) Ratio curve at a laser pulse width of 50 ns

    • 下面进行一个高温区域温度测试来验证该拉曼信号重构的实际效果。在实验中激光脉宽设置为20 ns,数据采集卡采样速率为250 MSPS,APD带宽为100 MHz,根据侯培国[16]给出的理论计算公式,系统理论空间分辨率经计算结果为2.27 m,由APD和数据采集卡限制的空间分辨率为1.07 m。取3圈周长为0.24 m、总长为0.72 m的测试光纤放入智能恒温槽,智能恒温槽中实际温度为92.1 ℃,传统解调算法下的温度曲线如图4所示,可以看出,传统温度解调算法下的测试光纤温度为58.2 ℃,温度误差为33.9 ℃。根据拉曼信号轨迹确定智能恒温槽影响的温度范围为1.13 m,经拉曼信号重构后温度解调结果为86.3 ℃,实测温度达到了实际温度的90%以上[17]。此前已有多次报道温度精度优于1 ℃的实验[18-19],这些方法是基于测试光纤足够长的情况下(大于空间分辨率),针对提升信噪比来优化测温精度。文中方法主要解决了当测温区域长度小于激光脉冲宽度的条件下造成的测温偏移,对于小范围泄漏监测具有突出优势。其中温度误差主要来源于APD带宽不足,该方法可随APD带宽的提高逐渐缩短可准确测量的温度区域长度和温度精度。

      图  4  92.1 ℃下的测温曲线

      Figure 4.  Temperature measurement curve at 92.1 ℃

      测试该方法不同的温度点,表1为40~90 ℃的实验测试,图5为传统解调方式下和拉曼信号重构后温度解调下的误差对比,图中左轴为传统解调方法温度误差,右轴为拉曼信号分段重构方法的温度误差。由于系统空间分辨率不足,在传统解调方法下产生了较大的测温误差,经该方法提升空间分辨率后,温度误差由最大的33.9 ℃提升至5.8 ℃以内,在0.72 m的测试光纤下达到了真实温度的90%以上,可以看出,经重构后系统温度精度和空间分辨率都得到了较高的提升。

      表 1  传统温度解调与重构后温度解调对比

      Table 1.  Comparison of traditional temperature demodulation and reconfigured temperature demodulation

      Actual temperature/℃Traditional demodulation/℃Raman signal reconstruction/℃
      40.731.039.8
      50.736.148.5
      61.641.758.2
      71.846.967.1
      81.952.777.2
      92.158.386.8

      图  5  传统解调方法与拉曼信号分段与重构方法温度误差对比

      Figure 5.  Temperature error between conventional demodulation method and Raman signal segmentation and reconstruction method

    • 文中分析了分布式光纤测温系统激光脉冲覆盖的高温区域拉曼信号特征,提出了一种拉曼信号分段与重构方法,根据温度梯度对高温区域拉曼信号进行分段,分为已知温度段和待测温度段,根据不同温度下待测温度段与已知温度段的拉曼信号强度差值实现信号重构。并采用20 ns脉宽激光光源与0.72 m光纤测试段进行了不同温度实验,结果表明,使用该方法后系统空间分辨率从2.27 m提升至1.13 m,测试段光纤最大温度误差从33.9 ℃减小到5.8 ℃。该方法可为油气储罐密封圈火灾、高温炉体裂缝等高空间分辨率温度监测应用提供有力支撑。

参考文献 (19)

目录

    /

    返回文章
    返回